Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

Optical Molasses

Definition: an arrangement of laser beams used for cooling atoms or ions

German: optische Molasse

Category: quantum optics

How to cite the article; suggest additional literature


An optical molasses is a single-frequency light field which can be used to dampen atomic motion, based on the mechanism of Doppler cooling (one variant of laser cooling).

In a simple one-dimensional version, an optical molasses is made with two counterpropagating laser beams, the frequency of which is tuned slightly below an atomic absorption resonance. As a result, a motion of an atom (or ion) in the direction of one of the beams will lead to a Doppler shift so that the absorption rate for the counterpropagating beam is increased, whereas the absorption rate for the opposite laser beam is reduced. Effectively there is a dissipative light force which is always directed opposite to the motion and therefore serves to reduce that motion.

A three-dimensional optical molasses can be made of six laser beams, propagating e.g. in the +X, X, +Y, Y, +Z, and Z directions. Such an arrangement can reduce the motion in any direction of space. It can therefore effectively reduce the temperature of an atomic (or ion) cloud.

It is also possible to use different frequencies of the counterpropagating beams, effectively generating a moving optical molasses which tends to bring the particle velocities toward a certain value. Through the Doppler shift, particles moving with that velocity experience equal frequencies of all the waves.


[1]S. Chu et al., “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure”, Phys. Rev. Lett. 55 (1), 48 (1985)
[2]P. D. Lett et al., “Optical molasses”, J. Opt. Soc. Am. B 6 (11), 2084 (1989)

(Suggest additional literature!)

See also: Doppler cooling, laser cooling
and other articles in the category quantum optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: