RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

Optical Parametric Generators

Acronym: OPG

Definition: light sources based on parametric amplifiers with no signal or idler input

Categories: nonlinear optics, photonic devices

How to cite the article; suggest additional literature

A parametric generator is an optical parametric amplifier with fairly high gain (many tens of decibels), so that a significant output power is generated even without any input signal. The physical origin of this emission is parametric fluorescence, amplified to high levels. This phenomenon is similar to amplified spontaneous emission (ASE) in a laser amplifier; in both cases, quantum fluctuations of the vacuum (→ vacuum noise) are amplified to macroscopic power levels.

optical parametric generator
Figure 1: Schematic of an optical parametric generator.

High enough gain for parametric generation can only be achieved by pumping with intense laser pulses. Typical OPG setups are based on nanosecond pump pulses from a Q-switched laser, but it is also possible to operate OPGs with femtosecond or picosecond (ultrashort) pulses from a mode-locked laser. (Note that the parametric gain builds up and decays as fast as the pump pulse.) In most cases, ultrashort pulses first need to be amplified (e.g. in a regenerative amplifier), but by combining certain high-power mode-locked lasers with highly nonlinear crystals it is possible to use the laser pulses directly [4].

Compared with an optical parametric oscillator, the setup of a parametric generator is simpler, because it does not need a resonator. The wavelengths of the signal and idler can simply be tuned by influencing the phase-matching conditions, e.g. by varying the crystal temperature or rotating the crystal (for critical phase matching). It is convenient that there is no need to keep a resonator synchronized or well aligned. On the other hand, a parametric generator gives less control over the properties of the pulses than would be possible with a synchronously pumped optical parametric oscillator, which can also have a much lower threshold pump power. Also, the required high optical intensities in OPG setups sometimes enforce operation close to the optical damage threshold of the nonlinear material.

It is possible to lower the threshold and significantly decrease the linewidth by injection seeding a parametric generator with some signal light, e.g. from a laser diode. However, the device should then actually be seen as a parametric amplifier.


The RP Photonics Buyer's Guide contains 4 suppliers for optical parametric generators. Among them:


[1]D. A. Kleinman, “Theory of optical parametric noise”, Phys. Rev. 174 (3), 1027 (1968)
[2]A. Piskarskas, “Optical parametric generators: tunable, powerful, ultrafast”, Opt. Photon. News 7 (7), 25 (1997)
[3]A. Galvanauskas et al., “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3”, Opt. Lett. 22 (2), 105 (1997)
[4]T. Südmeyer et al., “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fiber-feedback OPO”, J. Phys. D: Appl. Phys. 34 (16), 2433 (2001)
[5]B. Köhler et al., “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding”, Appl. Phys. B 75, 31 (2002)
[6]S. V. Marchese et al., “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3”, Appl. Phys. B 81 (8), 1049 (2005)
[7]E. Innerhofer et al., “Analysis of nonlinear wavelength conversion system for a red–green–blue laser projection source”, J. Opt. Soc. Am. B 23 (2), 265 (2006)

(Suggest additional literature!)

See also: optical parametric amplifiers, parametric amplification, parametric fluorescence, optical parametric oscillators, amplified spontaneous emission
and other articles in the categories nonlinear optics, photonic devices

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: