RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Optical Power

<<<  |  >>>

Definition: the energy per unit time, e.g. transported by a laser beam, or a focusing power

German: optische Leistung

Category: general optics

Formula symbol: P (for energy per time), 1 / f (for focusing power)

How to cite the article; suggest additional literature

The term optical power occurs in the literature with two totally different meanings:

In the following, both meanings are discussed.

Power as Energy per Time

A power with that meaning is usually specified in watts = joules per second. Particularly in the area of optical fiber communications, optical powers are also often specified in dBm, which means decibels relative to the reference power 1 mW. For example, a power of 100 μW = 0.01 mW corresponds to −20 dBm (= 20 dB less than 1 mW).

Optical powers of laser beams are often measured with so-called optical powermeters. Some of these devices can handle multiple kilowatts of laser power from a high-power laser; they are usually water-cooled. Other powermeters, often based on photodiodes, can be used for measuring very low optical powers of microwatts, nanowatts or even less. Optical power monitors are widely used as permanent parts of optical systems, e.g. in optical fiber communications.

The optical power of light which is radiated in a wide of direction cannot easily be measured with a powermeter only due to the difficultly of collecting it. In such cases, an integrating sphere can be used.

Note that the optical power of some source may be spread over a substantial frequency or wavelength range. As the responsivity of a photodetector (e.g., a photodiode) maybe frequency-dependent, one may then not easily obtain a correct measurement of the total optical power.

The power of an optical pulse varies with time (for ultrashort pulses, within femtoseconds); its maximum is called the peak power. The peak power can be estimated from the pulse energy and pulse duration. Particularly for a regular pulse train with a high pulse repetition rate, one often specifies the average power. When such the pulse train is sent into a powermeter with a low temporal resolution, that device will often just display the average power.

Even for a continuous-wave laser, the output power is not perfectly constant, but exhibits some level of intensity noise. (The better term would actually be power noise, but this not common.) See also the article on relative intensity noise.

From the power of a laser beam, one can estimate the maximum optical intensity (power per area) within its transverse profile, if the shape and width of that profile are known. On the other hand, the total optical power of a beam is the integral of its intensity over the full beam area.

Focusing Power

For this meaning, it is recommended to use a term like focusing power, dioptric power or refractive power rather than optical power in order to avoid the possible confusion with the energy per unit time (see above). Qualitatively, what is meant is the ability of an optical element (for example, a lens or a microscope objective, which is a combination of several lenses) to focus light. Quantitatively, the focusing power is the reciprocal of the focal length of the device, and its units are inverse meters (m−1), also called diopters (dpt). The article on focal length contains many more details.

See also: optical intensity, brightness, intensity noise, peak power, powermeters, optical power monitors, high-power lasers, focal length
and other articles in the category general optics

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow