RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Optical Refrigeration

<<<  |  >>>

Definition: a technique for cooling macroscopic samples via laser-induced fluorescence

German: optische Kühlung

Categories: methods, quantum optics

How to cite the article; suggest additional literature

Optical refrigeration (also called laser refrigeration or anti-Stokes fluorescent cooling) is a technique for cooling a macroscopic crystal (or a piece of glass) with a laser beam. The crystal must be doped, e.g. with ytterbium or thulium ions, which are excited by the laser beam. The laser wavelength is chosen such that it is longer than the average wavelength of the resulting fluorescence. This means that the energy of the absorbed photons is lower than the average energy of the emitted photons, so that energy is removed from the crystal. Of course, it is essential that the quantum efficiency of the fluorescence is high, and that nearly all fluorescence light can leave the crystal without being absorbed, e.g. by impurities: a single absorbed photon would offset the cooling effect of many other photons.

Cooling a piece of ZBLAN glass in a “laser fridge” from room temperature down to 208 K has been demonstrated [2], and 110 K have been achieved with Yb:LiYF4 (Yb:YLF) [7]. In theory, even temperatures of the order of 77 K (liquid nitrogen) should be reachable. Certain ytterbium-doped crystal materials, particularly tungstates such as Yb:KGW = Yb:KGd(WO4)2, appear to be suitable for this purpose.

Possible applications of laser refrigeration are the replacement of Stirling coolers and the like (avoiding moving parts, vibrations, etc.), but also radiation-balanced lasers, where the internal heat generation is essentially compensated by optical refrigeration.

It is instructive to consider entropy changes associated with laser refrigeration. The reduction in thermal entropy of the cooled device is more than compensated by the increase in entropy which arises from the conversion of narrow-band focused laser light into fluorescence light, which has a much higher entropy due to the many spatial modes and different frequencies involved in the emission.

See also the article on laser cooling, which deals with the cooling of microscopic particles, rather than macroscopic samples. The physical principles behind such cooling methods are rather different from those of optical refrigeration.


[1]P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung”, Z. Phys. 57, 739 (1929)
[2]R. I. Epstein et al., “Observation of laser-induced fluorescent cooling of a solid”, Nature 377, 500 (1995)
[3]S. R. Bowman and C. E. Mungan, “New materials for optical cooling”, Appl. Phys. B 71, 807 (2000)
[4]J. Thiede et al., “Cooling to 208 K by optical refrigeration”, Appl. Phys. Lett. 86, 154107 (2005)
[5]M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration”, Nature Photon. 1, 693 (2007)
[6]D. V. Seletskiy, “Laser cooling of solids to cryogenic temperatures”, Nature Photon. 4 (3), 161 (2010)
[7]D. V. Seletskiy et al., “Local laser cooling of Yb:YLF to 110 K”, Opt. Express 19 (19), 18229 (2011)

(Suggest additional literature!)

See also: fluorescence, laser cooling, quantum efficiency, radiation-balanced lasers
and other articles in the categories methods, quantum optics

If you like this article, share it with your friends and colleagues, e.g. via social media: