RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Optical Tweezers

<<<  |  >>>

Definition: arrangements for capturing and moving particles with laser beams

German: optische Pinzetten

Category: methods

How to cite the article; suggest additional literature

Optical tweezers belong to the most common tools for optical manipulation. As early as 1970, it was demonstrated that laser beams can be used to trap and move small particles, e.g. micron-sized latex spheres in water. This is possible due to various kinds of light forces. In the mid-1980s, Arthur Ashkin at AT&T Bell Laboratories greatly pushed and refined this technology, trapping single atoms and later individual viruses and Escherichia coli bacteria with a laser beam, which was tightly focused to a small spot with the objective lens of a microscope. It was shown that bacteria can stay alive for long times and even multiply while being trapped by optical tweezers, provided that a suitable (mid-infrared) laser wavelength is chosen (where little light is absorbed).

The forces exerted by optical tweezers e.g. on a bacterium are small in absolute terms – usually not more than a few piconewtons – but still large enough to prevent a bacterium from escaping and to pull it through water at a relatively high speed.

Optical tweezers can also be used as an optical levitation trap, where a small particle is suspended in air, and gravity is compensated by the light forces. Smaller forces are required for particles in a liquid. This has been shown to work even with a supercontinuum source [4], which at the same time makes it possible to carry out spectroscopic investigations of the captured particle.

As the given examples illustrate, the main application of optical tweezers is in microbiology. They can be used to manipulate single cells, e.g. bacteria, blood cells, or sperm (optically assisted in vitro fertilization), and for experiments on single molecules, e.g. DNA.

Note that there are also various other kinds of optical traps, which are applied to atoms or molecules. These partly also involve lasers, apart from electric and magnetic fields.


[1]A. Ashkin, “Acceleration and trapping of particles by radiation pressure”, Phys. Rev. Lett. 24 (4), 156 (1970)
[2]A. Ashkin and J. Dziedzic, “Optical levitation by radiation pressure”, Appl. Phys. Lett. 18, 283 (1971)
[3]A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers”, Proc. Natl. Acad. Sci. USA 94, 4853 (1997) (review article)
[4]P. Li et al., “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers”, Opt. Lett. 30 (2), 156 (2005)
[5]C. Liberale et al., “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation”, Nature Photon. 2, 723 (2008)
[6]A. N. Grigorenko et al., “Nanometric optical tweezers based on nanostructured substrates”, Nature Photon. 2, 365 (2008)
[7]A. Samadi and N. S. Reihani, “Optimal beam diameter for optical tweezers”, Opt. Lett. 35 (10), 1494 (2010)

(Suggest additional literature!)

See also: light forces, laser applications
and other articles in the category methods

In the RP Photonics Buyer's Guide, 7 suppliers for optical tweezers are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: