RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Orientation-patterned Semiconductors

<<<  |  >>>

Definition: semiconductors containing a periodic pattern of domain orientation

German: Halbleiter mit periodisch wechselnder Domänenorientierung

Categories: optical materials, methods, nonlinear optics

How to cite the article; suggest additional literature

Traditional nonlinear crystal materials based on dielectrics can be used for wide range of nonlinear frequency conversion processes. However, there is a limited choice of such materials for long-wavelength infrared applications, because most of those materials exhibit too strong absorption in the mid-infrared region. Various semiconductors present interesting alternatives for such applications, as they are made of relatively heavy chemical elements and have a correspondingly shifted infrared absorption edge. (In dielectrics such as oxides and borates, multiphonon absorption strongly limits the infrared transmission range.) For example, gallium arsenide (GaAs) has a wide transparency range of about 0.9–17 μm. Semiconductors also tend to have very high nonlinear coefficients, which is obviously very beneficial, particularly for high-gain devices like optical parametric amplifiers and for difference frequency generation. For example, GaAs has a value of d14 = 94 pm/V around 4 μm, which is one to two orders of magnitude higher than for common nonlinear dielectrics. Another attractive feature is the often very high thermal conductivity, allowing the conversion of quite high optical powers without substantial heating, which could affect the phase matching.

However, it has often been impossible to achieve phase matching for the desired nonlinear conversion processes – at least with birefringent phase matching; for example, gallium arsenide is optically isotropic (concerning linear optics), exhibiting no birefringence. Quasi-phase matching (QPM) can be a solution for that, but traditional methods of periodic poling for obtaining periodically inverted structures are applicable only to ferroelectric materials and therefore not e.g. to semiconductors with a cubic lattice structure such as gallium arsenide (GaAs). Therefore, novel techniques had to be developed for obtaining a periodic pattern of domain orientation in such semiconductors. A common term for such a material is e.g. orientation-patterned gallium arsenide, in short OP-GaAs.

Orientation-patterning techniques have so far mostly been applied to gallium arsenide, which has quite favorable properties. However, some other semiconductor materials are also of interest, and have been applied with some success. For example, gallium phosphide (GaP), having a larger bandgap than GaAs, has lower two-photon absorption in the convenient pumping range 1–1.7 μm; for comparison, efficient operation of OP-GaAs (in that respect similar to ZGP crystals) often requires longer-wavelength pump sources such as Tm:YAG lasers, Tm:Ho:YLF lasers or Tm-doped fiber lasers. Devices based on ZnSe and ZnTe have also been demonstrated [2].

Typical results achieved with domain-patterned semiconductor devices include the following processes and devices:

Stack-of-plate Method

An older method is the “stack-of-plate” method: several GaAs wafers with alternating crystal orientations are mechanically mounted or bonded to each other [1]. This technique allows for large apertures as required for high-energy applications, but not for small orientation periods (thus not for all desirable phase-matching applications) and not for easy mass production. Therefore, this technique could not find a wide range of applications in nonlinear optics.

Epitaxial Techniques

Another approach is epitaxial growth of patterned films on a suitable template [2, 6], serving as a pre-oriented substrate. The template itself may be fabricated with wafer stacking (see above), but that again limits the achievable poling period.

Far smaller periods can be realized with lithographic techniques. One of them [3] works as follows:

A later developed all-epitaxial approach is based on GaAs/Ge/GaAs heteroepitaxy (polar-on-nonpolar epitaxy):

For growing samples to a substantial thickness, relatively fast growth techniques such as organometallic vapor phase epitaxy (OMVPE) or hydride vapor phase epitaxy (HVPE) or liquid phase epitaxy (LPE) are required. Molecular beam epitaxy (MBE), for example, would be far too slow; it suitable only for generating the thin patterned template.

The quality of the thick epitaxially grown material can be very high, as long as sufficiently precise vertical domain propagation can be maintained over the required thickness. (Growth conditions need to be optimized accordingly, e.g. via various growth parameters such as temperature.) The film thickness and hence the beam aperture is often limited to a few hundred microns, although some growth techniques have been optimized for obtaining even devices with a thickness of the order of 1 mm [12] as required for high-power devices. Such device thicknesses are possible even for domain periods of the order of 30 μm.

Epitaxial techniques can also be applied to waveguide structures, resulting in an intense interaction which is not limited by beam divergence. One can thus obtain relatively efficiency frequency conversion at low power levels. For waveguides, a large device thickness is usually not required.

Bibliography

[1]L. Gordon et al., “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser”, Electron. Lett. 29 (22), 1942 (1993)
[2]M. J. Angell et al., “Growth of alternating <100>/<111>-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates”, Appl. Phys. Lett. 64, 3107 (1994)
[3]S. J. B. Yoo et al., “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding”, Appl. Phys. Lett. 66 (25), 3410 (1995)
[4]S. J. B. Yoo et al., “Wavelength conversion by difference-frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding”, Appl. Phys. Lett. 68, 2609 (1996)
[5]D. Zheng et al., “16-μm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs”, Opt. Lett. 23 (13), 1010 (1998)
[6]L. A. Eyres et al., “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion”, Appl. Phys. Lett. 79 (7), 904 (2001)
[7]T. Skauli et al., “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation”, Opt. Lett. 27 (8), 628 (2002)
[8]O. Levi et al., “Difference frequency generation of 8-μm radiation in orientation patterned GaAs”, Opt. Lett. 27 (23), 2091 (2002)
[9]K. L. Vodopyanov et al., “Optical parametric oscillation in quasi-phase-matched GaAs”, Opt. Lett. 29 (16), 1912 (2004)
[10]D. F. Bliss et al., “Epitaxial growth of thick GaAs on orientation-patterned wafers for nonlinear optical applications”, J. Cryst. Growth 287 (2), 673-678 (2006)
[11]K. L. Vodopyanov et al., “Terahertz-wave generation in quasi-phase-matched GaAs”, Appl. Phys. Lett. 89 (14), 141119 (2006)
[12]C. Lynch et al., “Growth of mm-thick orientation-patterned GaAs for IR and THz generation”, J. Crystal Growth 310 (24), 5241 (2008)
[13]G. Bloom et al., “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs”, Opt. Lett. 35 (4), 505 (2010)
[14]R. K. Feaver, R. D. Peterson and P. E. Powers, “Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 μm Tm,Ho:YLF laser”, Opt. Express 21 (13), 16104 (2013)
[15]V. Tassev et al, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices”, Proc. SPIE 8604 (2013)
[16]R. Demur et al., “High sensitivity narrowband wavelength mid-infrared detection at room temperature”, Opt. Lett. 42 (10), 2006 (2017)

(Suggest additional literature!)

See also: quasi-phase matching, periodic poling, nonlinear crystal materials, nonlinear optics
and other articles in the categories optical materials, methods, nonlinear optics

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow