Encyclopedia … combined with a great Buyer's Guide!

Phase Shift Method for Distance Measurements

Author: the photonics expert

Definition: a method for optical distance measurements

More general term: distance measurements with lasers

Categories: article belongs to category optical metrology optical metrology, article belongs to category methods methods

DOI: 10.61835/lbs   Cite the article: BibTex plain textHTML   Link to this page   LinkedIn

Laser rangefinders are often based on the phase shift method, a technique for measuring distances in the following way. A laser beam with sinusoidally modulated optical power is sent to a target. Some reflected light (from diffuse or specular reflections) is monitored, and that will exhibit a power modulation with the same frequency and same relative amplitude. The phase of that modulation is then compared with that of the sent light. The phase shift obtained is 2<$\pi$> times the time of flight times the modulation frequency. This shows that higher modulation frequencies can result in a higher spatial resolution.

Although the phase shift is directly proportional to the time of flight, the term time-of-flight method should be reserved to cases where one really measures a delay time more directly, e.g. with light pulses.

As for an optical interferometer, the phase shift method involves an ambiguity regarding the measured distance because with increasing distance the phase will vary periodically. However, the periodicity is much larger than in an interferometer, since the modulation frequency is much lower than the optical frequency. Also, the ambiguity can easily be removed, e.g. by using measurement results with different modulation frequencies.

Compared with interferometers, devices based on the phase shift technique are less accurate, but they allow unambiguous measurements over larger distances. Also, they are suitable for targets with diffuse reflection (scattering) from a rough surface.

Different Realizations

The power modulation may be obtained with an electro-optic modulator, acting on a continuous-wave laser beam. Modulation frequencies of many megahertz or even multiple gigahertz are easily obtained. A resonant type of modulator can be operated with relatively low input voltage, but only with a small range of modulation frequencies, making the removal of the mentioned ambiguity more difficult.

Some kinds of lasers, particularly laser diodes, can be modulated directly via the drive current at frequencies in the megahertz domain or even higher.

A special kind of power modulation is achieved by using a mode-locked laser. Advantages are the high modulation frequency (allowing for high accuracy) and (for passive mode locking) that no optical modulator is required.

The use of a laser beam allows to realize a laser radar, where an image is formed by scanning the laser beam direction in two dimensions. However, imaging systems can also be made with one or several current-modulated light-emitting diodes (LEDs) illuminating the whole object area. The spatial resolution is then obtained via imaging detection. There are photonic integrated circuits with two-dimensional sensor arrays, being able to measure the phase shift for each pixel.

More to Learn

Encyclopedia articles:

Suppliers

The RP Photonics Buyer's Guide contains 20 suppliers for laser rangefinders. Among them:

LEDlas

laser rangefinders

Our cutting-edge range finder utilizes advanced dToF technology to deliver exceptional long-range performance, reaching distances of 2–20 kilometers. Designed with safety in mind, our product is completely eye-safe, making it ideal for a variety of applications.

TOPTICA Photonics

laser rangefinders

Laser rangefinders can be used to monitor or measure distances or object lengths. They can also provide positional locations over long distances, e.g. several kilometers, without physically touching the observed object. The laser range finders are regularly used in geodesy, sports, hunting or military. Usually, the distances are measured with accuracies of up to a millimeter, whereas the measured object can even be in motion. In addition, measurements on natural surfaces with low reflectivity are also possible.

The Beam smart WS is the ultimate choice when looking for a compact and narrow linewidth OEM diode laser system. It is the wavelength stabilized version of the iBeam smart featuring reliable wavelength-stabilized diodes. Combined with iBeam smart’s flexible, microprocessor based electronics it makes system integration a snap.

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

preview

Share this with your network:

Follow our specific LinkedIn pages for more insights and updates: