RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Photoconductive Switches

<<<  |  >>>

Definition: electric switches controlled by light via photo-induced conductivity

German: photoleitende Schalter

Category: photonic devices

How to cite the article; suggest additional literature

A photoconductive switch is an electrical switch which is based on the photoconductivity of a material, i.e. an increase in its electrical conductance as a consequence of irradiation with light. In nearly all cases, one uses a semiconductor material, where the absorbed light (with a photon energy above the bandgap energy) generates free carriers, which then contribute to the conductivity. Frequently used materials are chromium-doped gallium arsenide (Cr-GaAs), low-temperature grown gallium arsenide (LT-GaAs), indium phosphide (InP), amorphous silicon, and silicon on sapphire (SoS). In order to reduce the recovery time of the switch (determined by the lifetime of photoexcited carriers), one typically uses low-temperature growth (often followed by rapid thermal annealing), some doping (e.g. chromium in GaAs), or ion bombardment for producing crystal defects. Apart from the recovery time, important criteria are the bandgap energy, dark resistivity, and electrical breakdown resistance.

There are different designs of photoconductive switches:

All such devices are of the metal–semiconductor–metal (MSM) type.

Photoconductive switches are used for various purposes:


[1]F. W. Smith et al., “Picosecond GaAs-based photoconductive optoelectronic detectors”, Appl. Phys. Lett. 54 (10), 890 (1989)
[2]D. Krokel et al., “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes”, Appl. Phys. Lett. 54, 1046 (1989)
[3]C. H. Lee, “Picosecond optics and microwave technology”, IEEE Trans. Microwave Theory Technol. 38 (5), 596 (1990)

(Suggest additional literature!)

See also: photoconductive sampling, electro-optic sampling
and other articles in the category photonic devices

If you like this article, share it with your friends and colleagues, e.g. via social media: