Encyclopedia … combined with a great Buyer's Guide!

Photoluminescence

Acronym: PL

Definition: emission of light which is caused by the irradiation of a material with other light

More general term: luminescence

German: Photolumineszenz

Category: physical foundationsphysical foundations

Author:

Cite the article using its DOI: https://doi.org/10.61835/jld

Get citation code: Endnote (RIS) BibTex plain textHTML

Photoluminescence is the emission of light which is caused by the irradiation of a substance with other light. The term embraces both fluorescence and phosphorescence, which differ in the time after irradiation over which the luminescence occurs. The radiated light is often visible, but can also be in the ultraviolet or infrared spectral region.

Physical Basis

Photoluminescence in semiconductors and dielectrics can usually only occur for illumination of a substance with light which has a photon energy above the band gap energy. (Exceptions are cases with multiphoton absorption at high optical intensities.) The photoluminescence usually occurs for wavelengths around the band gap wavelength.

In many cases, photoluminescence occurs only with certain dopants or impurities in a material. For example, fluorescence can occur when rare-earth-doped laser gain media are pumped with light which can excite the rare earth ions. Here, the emission can occur in various wavelength bands corresponding to optical transitions of those ions. One may obtain more than one photon per absorbed photon, when there is a cascade of transitions.

Photoluminescence may be largely suppressed (quenched) if there are fast non-radiative transitions to lower energy levels, leading to a very small lifetime of the excited levels..

Photoluminescence for the Characterization of Photonic Devices

Photoluminescence is sometimes used for the characterization of photonic devices or parts thereof. For example, one may irradiate a semiconductor wafer, on which additional layers for a semiconductor laser or a saturable absorber have been fabricated, with short-wavelength light for exciting photoluminescence. The optical spectrum of the photoluminescence (PL spectrum) and also the dependence of its intensity on the irradiation intensity and device temperature can deliver important information for device characterization. In particular, PL spectra and their intensity dependencies can allow one

  • to determine the band gap energy
  • to estimate the wavelength of maximum gain
  • to determine the composition of ternary or quaternary layers
  • to determine impurity levels (which can e.g. lead to the emission of light with longer wavelengths than otherwise possible)
  • to investigate recombination mechanisms

Photoluminescence mappers (PL mappers) can spatially resolve the photoluminescence, e.g. from epitaxially grown wafers. PL maps can reveal, e.g., a radial dependency of layer thickness or material composition.

Note that the characterization of photoluminescence is possible before any electrodes if been applied to the semiconductor structure.

More to Learn

Encyclopedia articles:

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

preview

Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!