RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library
Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

Polychromatic Light

Definition: light with multiple optical frequencies

German: polychromatisches Licht

Category: general optics

How to cite the article; suggest additional literature

Light is called polychromatic when it has multiple optical frequencies, i.e., if it is not monochromatic. In some cases, polychromatic light has a mixture of some number of discrete wavelength components, while in other cases its optical spectrum is continuous.

Light may still be considered as quasi-monochromatic if its optical bandwidth is so small that the behavior of interest (for example, the light propagation properties) is not significantly different from that of monochromatic light. For example, diffraction patterns will not be significantly modified if the bandwidth is only a small fraction of the mean optical frequency.

In many cases of technical interest, light is substantially polychromatic, i.e., its optical bandwidth is not small compared with the mean frequency. For example, many optical imaging instruments work with light throughout the visible spectral region, which ranges about from 400 nm to 700 nm in terms of wavelength or 430 THz to 750 THz in terms of optical frequency. Therefore, chromatic aberrations may be substantial if an optical system (e.g. a photographic objective or a microscope) is not designed to well work with polychromatic light.

Typical technical sources of broadband (strongly polychromatic) light are incandescent lamps (including halogen lamps) and superluminescent sources.

Various types of calculations in optics are based on the assumption of monochromatic light. Sometimes one can use the results simply by calculating them for some suitable set of optical wavelengths and calculating average values from those, for example. In other cases, that is difficult, or the calculations inherently need to be done for polychromatic light.

Light pulses are inherently polychromatic, even if the instantaneous frequency is constant throughout the pulse. In case of ultrashort pulses, the minimum possible optical bandwidth can be many terahertz.

See also: monochromatic light, optical frequency, bandwidth
and other articles in the category general optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow