RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Power over Fiber

<<<  |  >>>

Definition: delivery of power for electronic devices via light in an optical fiber

German: Leistungsübertragung über Glasfasern

Category: fiber optics and waveguides

How to cite the article; suggest additional literature

Optical fiber cables can be used for transmitting optical power from a source to some application. The term power over fiber or photonic power implies that the optical power is generated from electric power with a laser diode and at the end converted back to electrical power for some electronic device. That conversion can be done with a photovoltaic cell, i.e., a semiconductor device based on a material such as gallium arsenide, indium phosphide, or indium gallium arsenide. A typical system contains a laser diode emitting a few watts of optical power, a multimode fiber of a few hundred meters length, and a photovoltaic cell with an active area of several square millimeters.

Although an insulated copper wire is a simpler technology for transferring electric power, power over fiber offers advantages in specific situations:

Therefore, a number of applications can be envisaged in areas such as industrial sensors, aerospace, and optical communications.

Obvious disadvantages are the cost of optical components and the limited potential in terms of available power and conversion efficiency. There may also be a laser safety issue associated with several watts of optical power, which can leave the fiber when it is broken.

Choice of Wavelength and Power Efficiency

For short-range transmission, laser diodes emitting around 750–850 nm can be used in combination with GaAs-based photovoltaic cells. The power efficiency of a photovoltaic cell can easily be around 40–50%, i.e. significantly higher than for a normal solar cell, because the photon energy of the light is well matched to the bandgap of the photovoltaic cell. The electrical-to-electrical efficiency can then be of the order of 20–30% for systems with a short fiber.

Optical losses in the fiber, mostly due to scattering, limit the transmission distance and power efficiency of the system. Longer transmission distances (possibly several kilometers) can be realized with systems operating at longer optical wavelengths, because this drastically reduces Rayleigh scattering.

See also: fibers, fiber cables, laser diodes, fiber optics
and other articles in the category fiber optics and waveguides

In the RP Photonics Buyer's Guide, 5 suppliers for equipment for power over fiber are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: