RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the


<<<  |  >>>

Definition: devices for optical power measurements, based e.g. on heating of an absorber structure

German: Leistungsmessgeräte

Category: photonic devices

How to cite the article; suggest additional literature

thermal powermeter

Figure 1: Head of a typical thermal powermeter. The photograph was kindly provided by Ophir Photonics Group.

An optical powermeter (or laser power meter) is a device for the measurement of the power in a laser beam. Most powermeters are based on the principle that the optical power is converted to heating power in some absorber structure, and the resulting temperature rise (or actually the temperature difference between the absorber and the mount) is measured, e.g. with a thermopile. Such thermal powermeters (see Figure 1) are useful for average powers between ≈ 0.01 W and several kilowatts; typically, some water cooling is required for powers above roughly 10 W. They are fairly robust (although too tight focusing onto the absorber should be avoided), moderately precise, usable in a wide wavelength range (with fairly wavelength-independent sensitivity), and relatively slow.

When a thermal powermeter is set for high sensitivity (responsivity), for example for a maximum power below 100 mW, its mount should not be touched with the hand during measurements. This is because any warming of the mount can induce temperature differences which modify the reading.

Faster and more sensitive powermeters can be made with photodiodes. These can also be used for measurement of high powers when a suitable attenuator is used. They are, however, less robust than thermal powermeters. Also, their sensitivity is rather wavelength-dependent, so that a photodiode-based powermeter usually requires the user to make a setting for the wavelength. The device then uses an internal calibration table to compensate for the wavelength-dependent responsivity. Obviously, this method does not work for beams with a very broadband or variable optical spectrum, whereas it may be perfectly convenient in situations where the laser wavelength is rarely changed.

A possible problem with all kinds of optical powermeters is the uniformity of response. For thermal powermeters, a lack of uniformity can result from a dependence of the resulting absorbance or temperature distribution for different beam positions. For photodiodes, a nonuniform response can easily result from damage with too high optical intensities.

Hints for Selecting a Device

For finding the most appropriate type and model of optical powermeter, a significant number of aspects needs to be considered. The most basic aspects are:

Some additional aspects of possible practical relevance are:

Optical power meters are mostly used for temporary purposes, e.g. when testing laboratory setups or doing maintenance operations. For permanent monitoring of powers, one often uses optical power monitors, which can be integrated into systems. Such power monitors are also available in fiber-coupled form.

See also: optical power monitors, photodetectors, photodiodes, optical power
and other articles in the category photonic devices

In the RP Photonics Buyer's Guide, 57 suppliers for powermeters are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: