Encyclopedia … combined with a great Buyer's Guide!

Sponsoring this encyclopedia:     and others

Quantum Efficiency

Definition: percentage of input photons which contribute to a desired effect

Alternative term: quantum yield

German: Quanteneffizienz

Categories: light detection and characterization, physical foundations

Formula symbol: ηq

Units: %

How to cite the article; suggest additional literature


The quantum efficiency (or quantum yield) is often of interest for processes which convert light in some way. It is defined as the percentage of the input photons which contribute to the desired effect. Examples are:

2-micron emission with thulium with more than 100% quantum efficiency
Figure 1: 1.9-μm emission in a thulium-doped fiber laser with > 100% quantum efficiency.

In some special cases, the quantum efficiency of a laser or laser amplifier can be larger than unity. This is due to certain energy transfer processes between laser-active ions, which lead to a kind of cross-relaxation: starting with one ion in some excited state, a part of its energy is transferred to some other ion, which was originally in the electronic ground state, and both ions are finally in the upper laser level. This can, of course, only happen when the photon energy of the laser transition is lower than half that of the pump light. An example, illustrated in Figure 1, is that of thulium-doped 1.9-μm fiber lasers, where ions are pumped into the level 3F2−4, and a cross-relaxation process (gray arrows) populates the upper laser level 3H4. This could in principle lead to a quantum efficiency of up to 200%. Values well above 100% can be reached in practice.

The quantum efficiency should not be confused with the quantum defect.

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

See also: quantum defect, fluorescence, multi-phonon transitions, energy transfer, photodiodes
and other articles in the categories light detection and characterization, physical foundations


If you like this page, please share the link with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!