RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Radiative Lifetime

Definition: lifetime of an electronic state in the (hypothetical) situation where only radiative processes depopulate that level

German: radiative Lebensdauer

Category: physical foundations

Formula symbol: τrad

Units: s

How to cite the article; suggest additional literature

The radiative lifetime of an excited electronic state e.g. in a laser gain medium is the lifetime which would be obtained if radiative decay via the unavoidable spontaneous emission were the only mechanism for depopulating this state. It is given by the equation

radiative lifetime

which shows that high emission cross sections and a large emission bandwidth inevitably lead to a low radiative lifetime. This is because the cross sections describe not only the strength of stimulated emission but also that of spontaneous emission. The derivation of this equation is based on an equation for the mode density of free space, as is also used e.g. for the derivation of Planck's law for the power spectral density of thermal radiation. This means that the equation does not hold in microcavities (as often used in experiments on quantum electrodynamics), because such cavities can substantially modify the mode density.

Note also the influence of the refractive index via the mode density. If fluorescence lifetime measurements are done using a powder with a grain size well below the wavelength of light, the refractive index of the ambient medium (rather than that of the powder grains) becomes relevant. For example, the upper-state lifetime measured for powder in air can be longer compared with that for solid crystals. Such observations should not be misinterpreted as evidence for quenching effects in crystals.

Another important aspect is that a shorter mean wavelength of the emission implies a shorter radiative lifetime. This results from the increased mode density of the radiation field. A consequence is that ultraviolet lasers tend to have a higher threshold pump power than e.g. infrared lasers.

As the gain efficiency of a laser medium is (in simple cases) proportional to the product of the maximum emission cross section and the upper-state lifetime (the στ product), lasers based on broadband gain media have a higher threshold pump power.

The actual lifetime of an electronic level can be lower than the radiative lifetime, if non-radiative quenching processes also significantly depopulate the level. This means that the quantum efficiency of the transition is below unity.

If the quantum efficiency is known to be close to unity, the above equation can be used for obtaining the absolute scaling of emission cross sections, the wavelength dependence of which is already known from the shape of the emission spectrum (→ Füchtbauer–Ladenburg equation). In other cases, where the scaling of emission cross sections is known (e.g. obtained from absorption cross sections via the reciprocity method), the quantum efficiency of the fluorescence can be obtained by comparing the calculated radiative lifetime with the upper-state lifetime.

See also: upper-state lifetime, quantum efficiency, quenching, Füchtbauer–Ladenburg equation
and other articles in the category physical foundations

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow