RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Raman Scattering

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Note that RP Photonics has the RP Fiber Power software, with which stimulated Raman scattering in fibers can be studied in detail – see a demo case for the soliton self-frequency shift.

Definition: a nonlinear scattering process involving optical phonons

German: Raman-Streuung

Categories: fiber optics and waveguides, nonlinear optics, physical foundations

How to cite the article; suggest additional literature

The nonlinear response of a transparent optical medium to the optical intensity of light propagating through the medium is very fast, but not instantaneous. In particular, a non-instantaneous response is caused by vibrations of the crystal (or glass) lattice. When these vibrations are associated with optical phonons, the effect is called Raman scattering, whereas acoustical phonons are associated with Brillouin scattering. When e.g. two laser beams with different wavelengths (and normally with the same polarization direction) propagate together through a Raman-active medium, the longer wavelength beam (called the Stokes wave) can experience optical amplification at the expense of the shorter wavelength beam. In addition, lattice vibrations are excited, leading to a temperature rise. The Raman gain for the longer wavelength beam can be exploited in Raman amplifiers and Raman lasers. That gain can be substantial if the Stokes shift corresponds to a frequency difference of several terahertz.

In the Raman scattering process, one pump photon is converted into one lower-energy signal photon, and the difference of photon energies is carried away by a phonon (a quantum of the lattice vibrations). In principle, it is also possible that an already existing phonon interacts with a pump photon to generate one higher-energy photon, belonging to an anti-Stokes wave at a shorter wavelength. That process, however, is usually weak, particularly at low temperatures. Note, however, that strong anti-Stokes light can also arise from four wave mixing if that process is phase-matched.

When the intensity of the generated Stokes wave becomes sufficiently high, that wave may again act as the pump for a further Raman process. Particularly in some Raman lasers, it is possible to observe several Stokes orders (cascaded Raman lasers).

Apart from the mentioned stimulated Raman scattering effect, which can be described with classical physics, there is also spontaneous Raman scattering, caused by quantum effects.

Raman scattering can also occur within the broad optical spectrum of, e.g., an ultrashort optical pulse, effectively shifting the spectral envelope of the pulse towards longer wavelengths (Raman self-frequency shift, also called soliton self-frequency shift).

Some typical Raman-active media are

The Raman effect occurs together with the Kerr effect, which results from the (nearly) instantaneous response of the electrons.

evolution of the pulse spectrum in the fiber

Figure 1: Evolution of the pulse spectrum in a fiber amplifier. Near the right end, a significant part of the power is shifted into longer-wavelength components by stimulated Raman scattering. The simulation has been made with the software RP Fiber Power as part of a case study.

In optical fiber devices such as fiber amplifiers for intense pulses, Raman scattering can be detrimental: it can transfer much of the pulse energy into a wavelength range where laser amplification does not occur. This effect can limit the peak power achievable with such devices. Even in continuous-wave high-power fiber lasers and amplifiers, Raman scattering can be a problem. There are, however, various kinds of solutions to such problems, including chirped-pulse amplification and the use of special fiber designs (see e.g. [9]) which suppress Raman scattering by attenuating the Raman-shifted wavelength component.

In bulk media, such as certain nonlinear crystal materials, unwanted stimulated Raman scattering can occur even via non-collinear phase matching, if the pump intensity is rather high and the beam width is large enough. This can occur e.g. in optical parametric generators operated with intense pump pulses.

Raman scattering is also used in spectroscopy. In particular, it allows one to investigate the vibrational modes of materials.


[1]V. V. Raman and K. S. Krishnan, “A new type of secondary radiation”, Nature 121, 501 (1928)
[2]G. Eckhardt et al., “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite and alpha-sulfur single crystals”, Appl. Phys. Lett. 3, 137 (1963) (first report of stimulated Raman scattering in insulating crystals)
[3]N. Bloembergen, “The stimulated Raman effect”, Am. J. Phys. 35 (11), 989 (1967)
[4]R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering”, Appl. Opt. 11 (11), 2489 (1972)
[5]K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers”, IEEE J. Quantum Electron. 25 (12), 2665 (1989)
[6]R. H. Stolen et al., “Raman response function of silica-core fibers”, J. Opt. Soc. Am. B 6 (6), 1159 (1989)
[7]D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function”, J. Opt. Soc. Am. B 19 (12), 2886 (2002)
[8]J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method”, Opt. Commun. 222, 413 (2003)
[9]J. M. Fini et al., “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier”, Opt. Lett. 31 (17), 2550 (2006)
[10]Q. Lin and G. P. Agrawal, “Raman response function for silica fibers”, Opt. Lett. 31 (21), 3086 (2006)
[11]D. J. Spence and R. P. Mildren, “Mode locking using stimulated Raman scattering”, Opt. Express 15 (13), 8170 (2007)
[12]X. Ma et al., “Propagation-length independent SRS threshold in chirally-coupled-core fibers”, Opt. Express 19 (23), 22575 (2011)
[13]G. P. Agrawal, Nonlinear Fiber Optics, 4th edn., Academic Press, New York (2007)
[14]R. Paschotta, case study on the soliton self-frequency shift

(Suggest additional literature!)

See also: Raman gain, Raman amplifiers, Raman lasers, nonlinearities, Stokes shift, Brillouin scattering, Kerr effect, hyper Raman scattering, spectroscopy, Spotlight article 2010-03-03

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:


RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.


Watch our quick video tour!

Single-mode and Multi­mode Fibers


Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –