RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Recoil Limit

Definition: a lower limit for the temperature which can be reached with some laser cooling techniques

German: Rückstoßgrenze

Category: quantum optics

How to cite the article; suggest additional literature

The recoil limit is the lowest temperature reachable with laser cooling methods which involve a permanent interaction of the cooled atoms with light. It is given by the equation

recoil limit

where λ is the wavelength of the light and m is the mass of the atoms. At this temperature, the thermal energy equals the energy of an atom with a momentum equal to the photon momentum. Typical values for the recoil limit of atoms are of the order of 1 μK.

The recoil limit can be approached (although not fully reached) with polarization gradient cooling (→ Sisyphus cooling). Temperatures below the recoil limit have been achieved with velocity-selective coherent population trapping, where atoms become trapped in an electronic state where they do no longer interact with light.


[1]A. Aspect et al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping”, Phys. Rev. Lett. 61 (7), 826 (1988)
[2]M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms”, Phys. Rev. Lett. 69 (12), 1741 (1992)
[3]H. Katori et al., “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature”, Phys. Rev. Lett. 82 (6), 1116 (1999)

(Suggest additional literature!)

See also: Doppler limit, laser cooling, photons
and other articles in the category quantum optics

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: