RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Reference Cavities

<<<  |  >>>

Definition: optical cavities serving as a kind of frequency reference

German: Referenzresonatoren

Categories: optical metrology, optical resonators

How to cite the article; suggest additional literature

A reference cavity is a passive optical resonator (resonant cavity) which is used as a kind of fly-wheel oscillator (short-term frequency reference) in an optical frequency standard. The optical frequency of a single-frequency laser (or of a single line of the output of a mode-locked laser) can be stabilized to the frequency of a resonance of the reference cavity, effectively transferring the higher frequency stability of the cavity to the laser. Such stabilization or frequency locking can be achieved e.g. with an electronic feedback system based on the Pound–Drever–Hall method or the Hänsch–Couillaud method.

Compared with a laser resonator, a passive reference cavity can be significantly more stable, as it does not have the disturbing influences introduced by a gain medium. Also, it can have a very high finesse and Q factor, as the round-trip power losses can be minimized; this leads to a small resonator bandwidth, so that the resonance frequencies can be precisely determined. Further measures can be used to achieve extraordinarily high stability:

With intense efforts, as undertaken in various frequency metrology laboratories, a reference cavity can be so stable that a laser stabilized to it can have a short-term linewidth below 1 Hz.

Note that the linewidth of a laser oscillator which is stabilized to a reference cavity can be well below the resonator bandwidth, except if the latter is already very small. Therefore, the laser's Q factor may be higher than that of the reference cavity.


[1]C. Salomon et al., “Laser stabilization at the millihertz level”, J. Opt. Soc. Am. B 5 (8), 1576 (1988)
[2]J. Dirscherl et al., “A dye laser spectrometer for high resolution spectroscopy”, Opt. Commun. 91, 131 (1992)
[3]T. Day et al., “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry...”, IEEE J. Quantum Electron. 28 (4), 1106 (1992)
[4]S. Seel et al., “Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level”, Phys. Rev. Lett. 78 (25), 4741 (1997)
[5]B. C. Young et al., “Visible lasers with subhertz linewidth”, Phys. Rev. Lett. 82 (19), 3799 (1999)
[6]T. Liu et al., “Characterization of the absolute frequency stability of an individual reference cavity”, Opt. Lett. 34 (2), 190 (2009)
[7]J. Millo et al., “Ultrastable lasers based on vibration insensitive cavities”, Phys. Rev. A 79 (5), 053829 (2009)

(Suggest additional literature!)

See also: cavities, Q factor, stabilization of lasers, frequency metrology
and other articles in the categories optical metrology, optical resonators

If you like this article, share it with your friends and colleagues, e.g. via social media: