RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Reference Cavities

Definition: optical cavities serving as a kind of frequency reference

German: Referenzresonatoren

Categories: optical resonators, optical metrology

How to cite the article; suggest additional literature

A reference cavity is a passive optical resonator (resonant cavity) which is used as a kind of fly-wheel oscillator (short-term frequency reference) in an optical frequency standard. The optical frequency of a single-frequency laser (or of a single line of the output of a mode-locked laser) can be stabilized to the frequency of a resonance of the reference cavity, effectively transferring the higher frequency stability of the cavity to the laser. Such stabilization or frequency locking can be achieved e.g. with an electronic feedback system based on the Pound–Drever–Hall method or the Hänsch–Couillaud method.

Compared with a laser resonator, a passive reference cavity can be significantly more stable, as it does not have the disturbing influences introduced by a gain medium. Also, it can have a very high finesse and Q factor, as the round-trip power losses can be minimized; this leads to a small resonator bandwidth, so that the resonance frequencies can be precisely determined. Further measures can be used to achieve extraordinarily high stability:

With intense efforts, as undertaken in various frequency metrology laboratories, a reference cavity can be so stable that a laser stabilized to it can have a short-term linewidth below 1 Hz.

Note that the linewidth of a laser oscillator which is stabilized to a reference cavity can be well below the resonator bandwidth, except if the latter is already very small. Therefore, the laser's Q factor may be higher than that of the reference cavity.


The RP Photonics Buyer's Guide contains 3 suppliers for reference cavities. Among them:


[1]C. Salomon et al., “Laser stabilization at the millihertz level”, J. Opt. Soc. Am. B 5 (8), 1576 (1988)
[2]J. Dirscherl et al., “A dye laser spectrometer for high resolution spectroscopy”, Opt. Commun. 91, 131 (1992)
[3]T. Day et al., “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer”, IEEE J. Quantum Electron. 28 (4), 1106 (1992)
[4]S. Seel et al., “Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level”, Phys. Rev. Lett. 78 (25), 4741 (1997)
[5]B. C. Young et al., “Visible lasers with subhertz linewidth”, Phys. Rev. Lett. 82 (19), 3799 (1999)
[6]T. Liu et al., “Characterization of the absolute frequency stability of an individual reference cavity”, Opt. Lett. 34 (2), 190 (2009)
[7]J. Millo et al., “Ultrastable lasers based on vibration insensitive cavities”, Phys. Rev. A 79 (5), 053829 (2009)

(Suggest additional literature!)

See also: cavities, Q factor, stabilization of lasers, frequency metrology
and other articles in the categories optical resonators, optical metrology

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: