RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Relaxation Oscillations

<<<  |  >>>

Definition: small mutually coupled oscillations of the laser power and laser gain around their steady-state values

German: Relaxationsoszillationen

Category: lasers

How to cite the article; suggest additional literature

When a laser is disturbed during operation, e.g. by fluctuations of the pump power, its output power does not immediately return to its steady state. Many lasers (e.g. solid-state lasers and most laser diodes) operate in the so-called class B regime, with the upper-state lifetime being longer than the cavity damping time. In this regime, changes in pump power lead to so-called relaxation oscillations. These are usually damped, eventually leading back to the steady state. Particularly pronounced oscillatory behavior with relatively low oscillation frequencies (often in the kilohertz regime) occurs in doped insulator solid-state lasers, whereas semiconductor lasers normally exhibit strongly damped relaxation oscillations with very high frequencies in the gigahertz region. Other lasers, e.g. many gas lasers, operating in the class A regime with an upper-state lifetime below the cavity damping time, do not exhibit relaxation oscillations, but only an exponential relaxation to the steady state.

spiking behavior of a laser

Figure 1: Simulated turn-on dynamics of a Nd:YAG laser, assuming that the pump power is suddenly switched on. Before the steady state is reached, the laser emits a number of spikes and undergoes damped relaxation oscillations.

As Figure 1 shows, class B lasers can exhibit strong spiking e.g. when the pump power is suddenly turned on. After the emission of a few spikes (pulses), the laser power exhibits damped relaxation oscillations. The oscillation frequency is similar to the inverse period of the spikes.

Calculations of relaxation phenomena can be based on the dynamic equations as presented in the article on laser dynamics, which can (for small fluctuations, not for spiking) be linearized around the steady state. In the following, the main results of such an analysis are given. The frequency of the relaxation oscillations is determined by the intracavity power Pint, the resonator losses l, the round-trip time TR of the resonator, and the saturation energy Esat and the upper-state lifetime τg of the gain medium:

relaxation oscillation frequency

The cavity damping time corresponds to TR / l, and the first term in the radicand is larger than the second one in the mentioned class B regime.

For solid-state lasers (with τg >> TR), the second term of the radicand is negligible (except for operation close to threshold), so that the equation simplifies to

relaxation oscillation frequency

Calculator for Relaxation Oscillations

Resonator round-trip time:
Saturation energy of gain medium:
Upper-state lifetime:
Round-trip power loss: (must be << 100 %)
Intracavity power:
Relaxation oscillation frequency: calc
Damping time: calc

Enter input values with units, where appropriate. After you have modified some values, click a "calc" button to recalculate the field left of it.

The equations are valid for both four-level and three-level gain media. Only for four-level gain media can the former equation be transformed into

relaxation oscillation frequency

where r is the so-called pump parameter, which is the ratio of pump power to threshold pump power.

The damping time of the oscillations can be calculated from

damping time of relaxation oscillations

For operation just above the laser threshold, it is about twice the upper-state lifetime of the gain medium, and the damping gets stronger for higher powers. For four-level lasers, the damping time is inversely proportional to the pump parameter.

Note that a saturable absorber in the laser resonator, which may be used for passive mode locking, can strongly reduce the damping [2]; the oscillations can even become undamped, so that the steady state becomes unstable. This leads to the phenomenon of Q-switching instabilities and Q-switched mode locking.

The characterization of the laser dynamics can deliver useful information on the laser parameters such as the resonator losses or the gain saturation energy, thus also the laser cross sections.


[1]K. J. Weingarten et al., “In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements”, Opt. Lett. 19 (15), 1140 (1994)
[2]A. Schlatter et al., “Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold”, J. Opt. Soc. Am. B 21 (8), 1469 (2004)
[3]A. E. Siegman, Lasers, University Science Books, Mill Valley, CA (1986)
[4]O. Svelto, Principles of Lasers, Plenum Press, New York (1998)

(Suggest additional literature!)

See also: laser dynamics, spiking, Q-switching instabilities
and other articles in the category lasers

Dr. R. Paschotta

This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

If you like this article, share it with your friends and colleagues, e.g. via social media: