RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

RGB Sources

<<<  |  >>>

Definition: source of red, green and blue light, which is usually provided in the form laser beams

German: RGB-Quellen

Categories: lasers, nonlinear optics

How to cite the article; suggest additional literature

An RGB source is a light source which emits at the same time red, green and blue light. Such sources are required mainly for color display applications. A wide range of colors can be obtained by mixing different amounts of red, green and blue light (additive color mixing). A possible combination of wavelengths is 630 nm for red, 532 nm for green, and 465 nm for blue light.

Many currently used projection displays (“beamers”) are based on an arc lamp, combined with various color filters. While an arc lamp is much cheaper than a laser source of comparable output power, it does not allow for a high wall-plug efficiency, it has a limited lifetime, and the poor spatial coherence of the output imposes restrictions on the achievable image quality. Also, the available color space is not very large. Therefore, laser sources are under investigation that could offer a wider color space, much better spatial coherence (beam quality), and higher power efficiency. Such RGB laser sources emit light in the form of laser beams – either one beam for each color, or all colors combined in one beam.

Color Perception and the Chromaticity Diagram

Color perception is not just an issue of physics, but depends on the workings of our eyes. The retina of the human eye contains just three different receptors with different sensitivity to light at different wavelengths. (There is actually a fourth kind of receptor with yet another spectral response curve, but this is used only for vision at very low light levels.) The perception of colors is based on registering the relative strength of excitation of the three types of receptors. Therefore, the perceived colors are projected to an only three-dimensional space. (Most mammals actually use only two different color receptors, shrinking the color perception even to two dimensions.) As a result, all perceived colors can be located in a two-dimensional chromaticity diagram as shown in Figure 1, if the possibility of varying the optical intensity of each color is ignored.

chromaticity diagram according to CIE 1931

Figure 1: Chromaticity diagram according to CIE 1931. Monochromatic light with different wavelengths corresponds to the edge of the colored area (wavelength values in nanometers are indicated). Of course, the colors can not be correctly reproduced, because no screen and no printer can reproduce the whole range of colors.

In the case of laser-based RGB sources, the red, green and blue beams usually have a relatively narrow optical bandwidth, i.e. they are close to monochromatic. In the chromaticity diagram, such beams are associated with points at the border of the colored region. By mixing, e.g., three monochromatic beams, all those colors can be reproduced which lie in the triangle spanned by the corresponding points. For comparison, the accessible color range for a cathode tube display, a lamp-based beamer or a color printer is a triangle with the edges lying well inside the diagram, so that the spanned area is usually much smaller. A significant further improvement of a laser-based projection system would be to add a fourth wavelength.

Color Rendering and Luminous Efficiency

The choice of the three wavelengths of an RGB source determines the so-called color rendering index (CRI), which is a quantitative measure of how well it is possible to judge the color of objects when these are illuminated with white light consisting (in our case) of the three spectral components. Further, the choice of wavelengths influences the possible luminous efficiency (also called efficacy) of the source, and the two aspects can be in conflict with each other. For example, a long wavelength of the red beam is favorable in terms of color rendering, but tends to diminish the luminous efficiency because the human eye's sensitivity drops rapidly with increasing wavelength in that region.

The reason why good color rendering is more difficult with pigments (e.g. of paints, dyes, or inks) than with laser beams is essentially that pigments work on the basis of subtractive color mixing, and this approach does not allow the combination of relatively bright colors with narrow optical bandwidths: if a pigment were to generate a very “pure” color (close to monochromatic light), it would have to absorb all light outside a narrow wavelength band, and leave only a tiny portion of the incident optical power. Conversely, a bright yellow pigment, for example, has to transmit not only yellow, but also a lot of red, orange and green light, as it could otherwise not look bright. Such a mixture of different wavelengths, however, cannot correspond to a point in the color diagram which is close to the boundary, where the monochromatic beams are located.

Note that the availability of a practical laser-based RGB source would not automatically make it possible to realize projection displays for entertainment with a faithful color rendering in a very wide color space. Video material covering that wide color space would also be required. Currently used videos are based on a smaller color gamut, so that color information is lost. The small color gamut of the video may be transformed into a larger gamut for the display, but in that case the color rendering will not be faithful.

Required Power Level and Beam Quality

optical powers below 1 W per color are sufficient for indoor digital projection displays (with not too much ambient light) with a projection area of up to a few square meters. For hand-held devices, even a few tens of milliwatts are sufficient, although higher power levels are desirable for operation under non-optimum ambient light conditions. Cinema projectors require 10 W per color or more. Suitable projector technology exists, but the RGB sources have not yet reached sufficient power, maturity and cost effectiveness, e.g. for application in cinemas. A smaller market with lower sensitivity to cost is the area of flight simulators.

In most cases, RGB sources need to have a reasonable or even good beam quality, e.g. if the display contains a projector which scans the displayed pixels point by point; here, a sufficiently small pixel size (for high resolution) requires a high beam quality. For other projector types, the beam quality demands may be lower.

Power Modulation

Depending on the type of projector engine, the three components of an RGB source may or may not have to be power-modulated according to the video signal. Power modulation is most often needed in case of scanning projectors, particularly in the context of low-power miniature devices, where the use of external optical modulators is not practical. The modulation bandwidth required is typically in the region of tens of megahertz or (for higher resolution) even > 100 MHz. This is possible when laser diodes are used, but not when doped insulator solid-state lasers are involved.

Types of Laser-based RGB Sources

Different approaches can be taken to construct RGB sources. One possibility is to use three lasers, each emitting light with the wanted color. The problem is, however, that visible lasers are severely limited in performance compared with their near-infrared counterparts. At least a few hundred milliwatts of nearly diffraction-limited output, which would be sufficient for not too large indoor projection displays, can be generated with red and blue laser diodes, whereas there is unfortunately no green laser diode with similar performance and a sufficiently long lifetime. Therefore, the green light usually has to be generated by frequency doubling the output of a Nd:YAG or Nd:YVO4 laser emitting at 1064 nm. Intracavity frequency-doubled VECSELs and devices with single-pass doubling in a waveguide are also attracting increasing interest for that purpose, because they have the potential for cost-effective mass production.

For higher power levels of multiple watts, the red and blue light also have to be generated in other ways, usually with one or several infrared solid-state lasers and some kind of nonlinear frequency conversion in nonlinear crystals. It is possible to start with a single near-infrared laser and generate all three colors through a combination of nonlinear frequency conversion stages. For example, one may start at 1064 nm, generate the 532-nm green light by frequency doubling, use part of it to pump an optical parametric oscillator emitting a signal e.g. at 631 nm (red output) and an idler at 920 nm. The latter can be frequency doubled to obtain blue light at 460 nm. There are, however, many other schemes, involving different combinations of parametric oscillators, frequency doublers, sum frequency mixers, and the like. The evaluation and comparison of such conversion schemes are a complex task, since the performance of the different nonlinear conversion stages depends not only on the crystal materials but also on optical (peak) powers, pulse durations, and phase-matching issues.


[1]G. Hollemann et al., “High-power laser projection displays”, Proc. SPIE 4294, 36 (2001)
[2]S. Muthu et al., “Red, green, and blue LEDs for white light illumination”, IEEE J. Sel. Top. Quantum Electron. 8 (2), 333 (2002)
[3]F. Brunner et al., “Powerful RGB laser source pumped with a mode-locked thin disk laser”, Opt. Lett. 29 (16), 1921 (2004)
[4]X. P. Hu et al., “High-power red–green–blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice”, Opt. Lett. 33 (4), 408 (2008)
[5]R. Wallenstein, “Process and apparatus for generating at least three laser beams of different wavelength for the display of color video pictures”, U.S. Patent 5 828 424 (1998)

(Suggest additional literature!)

See also: nonlinear frequency conversion, red lasers, green lasers, blue lasers, visible lasers, Spotlight article 2009-04-17
and other articles in the categories lasers, nonlinear optics

In the RP Photonics Buyer's Guide, 20 suppliers for RGB sources are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: