RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Ruby Lasers

Definition: solid-state lasers based on a ruby crystal

German: Rubin-Laser

Category: lasers

How to cite the article; suggest additional literature

A ruby laser is a red solid-state laser based on a synthetic ruby laser crystal as gain medium. Ruby is chromium-doped corundum (aluminum oxide, Cr3+:Al2O3). The first laser, demonstrated by Theodore H. Maiman at Hughes Research Laboratories in 1960, was a free-running flash-lamp pumped ruby laser emitting at 694.3 nm [1]. Optical pumping is possible in the green and blue spectral region.

Although many other solid-state lasers have later on been developed, ruby lasers belong to the relatively few solid-state visible lasers; most others are emitting in the infrared spectral region. In contrast to other red lasers, such as helium–neon lasers, they are suitable for generating intense pulses.

Ruby belongs to the class of three-level laser gain media and therefore requires quite high pump intensities for producing laser gain. Nd:YAG, a prominent example for a four-level gain medium, is much easier to operate. In addition, the required green or blue pump light makes diode pumping similarly difficult as for titanium–sapphire lasers; it is possible, however, with blue laser diodes [2]. Mostly, ruby lasers are pumped with flash lamps, either in free-running mode (with pulse durations of the order of 1 ms) or with Q switching for nanosecond pulse with correspondingly higher peak power. Quite high pulse energies (e.g. 1 J) can be achieved, although hardly in combination with high beam quality.

Due to their limited performance, ruby lasers are not widely used. Initial applications were for laser rangefinders, high-speed photography, pulsed holography, tattoo and hair removal (→ medical lasers), apart from the pulsed pumping of infrared dye lasers. Nowadays, some Q-switched ruby lasers are used for diamond drilling.

Bibliography

[1]T. H. Maiman, “Stimulated optical radiation in ruby”, Nature 187, 493 (1960) (first experimental demonstration of a laser)
[2]W. Luhs and B. Wellegehausen, “Diode pumped cw ruby laser”, OSA Continuum 2 (1), 184 (2019)

(Suggest additional literature!)

See also: chromium-doped gain media, visible lasers, red lasers, alexandrite lasers
and other articles in the category lasers

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow