RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Signal-to-noise Ratio

<<<  |  >>>  |  Feedback

Buyer's Guide

Use the RP Photonics Buyer's Guide to find suppliers for photonics products! You will hardly find a more convenient resource.

Acronym: SNR

Definition: the ratio of signal power to noise power in a detector

German: Signal-zu-Rausch-Verhältnis

Categories: fluctuations and noise, optical metrology

How to cite the article; suggest additional literature

The quality of optical and other measurements is often characterized with a signal-to-noise ratio (SNR, S/N ratio). This is generally understood to be the ratio of the detected powers (not amplitudes), and is often expressed in decibels. Usually, the definition refers to electrical powers in the output of some detector. In the context of image processing, the signal-to-noise ratio is often defined in a different way: as the ratio of the mean pixel value and its standard deviation (for constant illumination).

In optical measurements, a common situation is that some light beam impinges a photodetector such as a photodiode, which produces a photocurrent in proportion to the optical power, with some electronic noise added. Depending on the situation, the signal-to-noise ratio may be limited either by optical noise influences (including shot noise) or by noise generated by the detector electronics. Some examples are given below.

The signal-to-noise ratio often limits the accuracy with which some measurement can be done. For digital signals, it can limit the reliability of detecting correctly, which can be quantified with a bit error rate. The latter situation is common in optical fiber communications, where some required bit error rate can only be achieved with a sufficiently high signal-to-noise ratio at the detector.

The Power of Noise

The power of noise is spread over some range of noise frequencies, and can be described with a power spectral density. Assuming white noise for simplicity, where the power spectral density is independent of noise frequency, the noise power is proportional to the detection bandwidth. If some signal is available for a longer time, the noise influence on a measurement can be reduced by averaging over a longer time interval. This can also be described as a reduction of the detection bandwidth (because changes of the signal within that interval could no longer be detected), which implies that the total noise power is reduced and thus the signal-to-noise ratio is increased (see Figure 1). Note also that the minimum possible detection bandwidth roughly equals the inverse measurement time.

signal-to-noise ratio

Figure 1: An optical signal at 1043.4 nm, which is contaminated with some level of white noise (resulting from amplified spontaneous emission in an amplifier), has been recorded with two different values of the resolution bandwidth (RBW). This bandwidth affects the noise level, but not the signal level. Consequently, a better signal-to-noise ratio (≈ 32 dB) is achieved with the smaller resolution bandwidth.

signal-to-noise ratio

Figure 2: Same as in Figure 1, but with averaging over 10 traces, so that the average noise power (the power spectral density) is better approximated. Note that this kind of averaging does not improve the signal-to-noise ratio; it only reduces the uncertainty in the noise level, but not the noise level as such.

Example 1: Optical Measurement Limited by Thermal Noise

When an optical signal with a relatively low optical power such as 1 μW impinges a photodiode, and this photodiode is operated with some reverse bias and a resistor for converting the photocurrent into a voltage signal, the noise of that signal is normally dominated by thermal noise from the resistor or by excess noise from further electronic components.

If the signal is some weak sinusoidal modulation of the optical power, the detected electrical signal power is proportional to the square of the signal amplitude, i.e., to the square of the amplitude of the optical power modulation. Doubling the overall optical power would double that amplitude and quadruple the detected signal power, whereas the noise power remains constant. This means that the signal-to-noise ratio would then be increased by a factor of 4, corresponding to 6 dB.

Example 2: Shot-noise-limited Optical Measurement

When an optical signal with a sufficiently high optical power (for example, 10 mW) impinges a photodiode equipped with high-quality electronics, electronic noise influences are often negligible, even if the optical signal in contaminated only by shot noise.

If we again assume the signal to be a weak sinusoidal modulation of the optical power, doubling the overall optical power would still increase the detected signal power by a factor of 4, but it would also double the noise power resulting from shot noise. In effect, the signal-to-noise ratio would be doubled, corresponding to an increase by 3 dB.

Measures for Improving the Signal-to-Noise Ratio of Optical Measurements

In optical measurements, the signal-to-noise ratio may be increased with various types of measures:

See also: shot noise, laser noise, noise specifications, photodiodes, Spotlight article 2009-07-21, Spotlight article 2009-11-13, Spotlight article 2009-12-13

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

RP Fiber Power – the versatile Fiber Optics Software

An Amazing Tool

RP Fiber Power software

This amazing tool is extremely helpful for the development of passive and active fiber devices.

ASE

Watch our quick video tour!

Single-mode and Multi­mode Fibers

fibers

Calculate mode properties such as

  • amplitude distributions (near field and far field)
  • effective mode area
  • effective index
  • group delay and chromatic dispersion

Also calculate fiber coupling efficiencies; simulate effects of bending, nonlinear self-focusing or gain guiding on beam propagation, higher-order soliton propagation, etc.

Arbitrary Index Profiles

A fiber's index profile may be more complicated than just a circle:

special fibers

Here, we "printed" some letters, translated this into an index profile and initial optical field, propagated the light over some distance and plotted the output field – all automated with a little script code.

Fiber Couplers, Double-clad Fibers, Multicore Fibers, …

fiber devices

Simulate pump absorption in double-clad fibers, study beam propagation in fiber couplers, light propagation in tapered fibers, analyze the impact of bending, cross-saturation effects in amplifiers, leaky modes, etc.

Fiber Amplifiers

fiber amplifier

For example, calculate

  • gain and saturation characteristics (for continuous or pulsed operation)
  • energy transfers in erbium-ytterbium-doped amplifier fibers
  • influence of quenching effects, amplified spontaneous emission etc.

in single amplifier stages or in multi-stage amplifier systems, with double-clad fibers, etc.

Fiber-optic Telecom Systems

eye diagram

For example,

  • analyze dispersive and nonlinear signal distortions
  • investigate the impact of amplifier noise
  • optimize nonlinear management and the placement of amplifiers

Find out in detail what is going on in such a system!

Fiber Lasers

fiber laser

For example, analyze and optimize the

  • power conversion efficiency
  • wavelength tuning range
  • Q switching dynamics
  • femtosecond pulse generation with mode locking

for lasers based on double-clad fiber, with linear or ring resonator, etc.

Ultrafast Fiber Lasers and Amplifiers

fiber laser

For example, study

  • pulse formation mechanisms
  • impact of nonlinearities and chromatic dispersion
  • parabolic pulse amplification
  • feedback sensitivity
  • supercontinuum generation

Apply any sequence of elements to your pulses!

… and even Bulk Devices

regenerative amplifier

For example, study

  • Q switching dynamics
  • mode-locking behavior
  • impact of nonlinearities and chromatic dispersion
  • influence of a saturable absorber
  • chirped-pulse amplification
  • regenerative amplification

RP Fiber Power is an extremely versatile tool!

Mode Solver

fiber modes

For example, calculate

  • amplitude and intensity profiles
  • effective mode areas
  • cut-off wavelengths
  • propagation constants
  • group velocities
  • chromatic dispersion

All this is calculated with high efficiency!

Beam Propagation

beam propagation

Propagate optical field with arbitrary wavefronts through fibers. These may be asymmetric, bent, tapered, exhibit random disturbances, etc.

See our demo video for numerical beam propagation.

Laser-active Ions

level scheme

Work with the standard gain model, or define your own level scheme!

Can include different ions, energy transfers, upconversion and quenching effects, complicated pumping schemes, etc.

Multiple Pump and Signal Waves, ASE

optical channels

Define multiple pump and signal waves and many ASE channels – each one with its own transverse intensity profile, loss coefficient etc.

The power calculations are highly efficient and reliable.

Simple Use and High Flexibility Combined

For simpler tasks, use convenient forms:

signal parameters

Script code is automatically generated and can then be modified by the user. A powerful script language gives you an unparalleled flexibility!

High-quality Documentation and Competent Support

The carefully prepared comprehensive documentation includes a PDF manual and an interactive online help system.

Competent technical support is provided: the developer himself will help you and make sure that any problem is solved!

Our support is like included technical consulting.

Boost your competence, efficiency and creativity!

  • Stop fishing in the dark! Develop a clear quantitative understanding of your devices.
  • Explore the effects of possible design changes on your desk.
  • That way, get most efficient in the lab.
  • Find optimized solutions efficiently, minimizing time to market.
  • Get new ideas by playing with your models.

Efficiency and success of
R & D are not a matter of chance.

See our detailed description with many case studies!

Contact us to get a quotation!

– Show all banners –

– Get your own banner! –