Encyclopedia … combined with a great Buyer's Guide!

Sponsors:     and others

Single-frequency Operation

Definition: an operation mode of a laser where only a single resonator mode acquires a significant power

Opposite term: multimode operation

German: einmodiger Betrieb

Category: laser devices and laser physics


How to cite the article; suggest additional literature

URL: https://www.rp-photonics.com/single_frequency_operation.html

A laser can be made to operate on a single mode of its resonator, and is then called a single-frequency laser. The linewidth of the laser light can then be very small – often only a few kilohertz – and the coherence length accordingly long. In contrast, multimode operation causes a much larger optical bandwidth – a multiple of the mode spacing (free spectral range) of the resonator.

Single-frequency operation is required e.g. to drive resonant cavities (e.g. for efficient frequency doubling in an external enhancement cavity), for high-resolution laser spectroscopy, for coherent beam combining of laser outputs, for optical frequency standards, for many other applications in optical metrology, and for applications where the intensity noise must be very low.

Emission Linewidth

The emission linewidth can be extremely small for single-frequency operation – far below the longitudinal mode spacing of the resonator, and many orders of magnitude below the gain bandwidth. The theoretical limit is the Schawlow–Townes linewidth, determined by quantum noise. In most cases, however, the Schawlow–Townes limit is very hard to reach, since technical noise influences (e.g., acoustic noise and thermal fluctuations) are difficult to suppress to the required extent.

How to Achieve Single-frequency Operation

Single-frequency operation is usually obtained when the bandwidth of the net gain is smaller than the frequency spacing of the resonator modes. (The laser should operate on the fundamental transverse mode only, i.e. emit a diffraction-limited beam, in order to eliminate the different mode frequencies of higher-order transverse modes.)

For gain media with large bandwidth, single-frequency operation can still be achieved by using some optical filters (e.g. an etalon) in the resonator and/or by making the resonator short (thus increasing the mode spacing to obtain a large free spectral range).

Note that reduced mode competition, e.g. inhomogeneous gain saturation caused by spatial hole burning in a standing-wave resonator, can make it difficult to achieve single-frequency operation. Therefore, single-frequency operation is often realized with unidirectional ring lasers, or sometimes with the twisted-mode technique for linear resonators. In fiber lasers and amplifiers, additional problems arise from stimulated Brillouin scattering.

It might be expected that intracavity frequency doubling is not readily compatible with single-frequency operation, but the opposite is true: via sum frequency generation, the intracavity nonlinearity even protects the lasing modes by introducing higher losses for other modes.

The concept of distributed feedback lasers is often used for achieving single-frequency operation, particularly for semiconductor lasers and fiber lasers. This usually leads to fairly short laser resonators.

Thermal drifts, e.g. of the gain medium, can cause occasional mode hopping, i.e. the change from one oscillating resonator mode to another. To a limited extent, this can be acceptable for applications.

If a high optical power in a single-frequency signal is required, a master oscillator power amplifier configuration can be employed. An alternative with potentially lower laser noise is injection locking of a high-power laser with a single-frequency low-power laser.

The article on single-frequency lasers discusses different types of lasers for single-frequency operation.


[1]K. Kobayashi and I. Mito, “Single frequency and tunable laser diodes”, IEEE J. Lightwave Technol. 6 (11), 1623 (1988), DOI:10.1109/50.9978
[2]J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers”, Opt. Lett. 14 (1), 24 (1989), DOI:10.1364/OL.14.000024
[3]J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities”, Opt. Lett. 15 (8), 431 (1990)
[4]R. Paschotta et al., “Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning”, Opt. Lett. 22 (1), 40 (1997), DOI:10.1364/OL.22.000040
[5]K. I. Martin et al., “Stable, high-power, single-frequency generation at 532 nm from a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler”, Appl. Opt. 36 (18), 4149 (1997), DOI:10.1364/AO.36.004149
[6]Y. Takushima et al., “Polarization-stable and single-frequency fiber lasers”, J. Lightwave Technol. 16 (4), 661 (1998), DOI:10.1109/50.664080
[7]S. Fu et al., “Review of recent progress on single-frequency fiber lasers”, J. Opt. Soc. Am. B 34 (3), A49 (2017), DOI:10.1364/JOSAB.34.000A49

See also: single-frequency lasers, single-mode operation, Schawlow–Townes linewidth, modes of laser operation, resonator modes, mode competition, mode hopping, twisted-mode technique, spotlight 2006-09-03b

Questions and Comments from Users


How can a unidirectional ring cavity enable single frequency operation if there are two or more modes having the same gains which are both near the peak of gain linewidth?

The author's answer:

A very tiny gain advantage for one of the modes is already sufficient for that mode to completely suppress the other one.


What defines the maximum scan width for tunable single-mode lasers?

The author's answer:

There can be different limitations. For example, it can be the gain bandwidth or the free spectral range of a tuning filter.

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!

Code for Links on Other Websites

If you want to place a link to this article in some other resource (e.g. your website, social media, a discussion forum, Wikipedia), you can get the required code here.

HTML link on this article:

<a href="https://www.rp-photonics.com/single_frequency_operation.html">
Article on Single-frequency operation</a>
in the <a href="https://www.rp-photonics.com/encyclopedia.html">
RP Photonics Encyclopedia</a>

With preview image (see the box just above):

<a href="https://www.rp-photonics.com/single_frequency_operation.html">
<img src="https://www.rp-photonics.com/previews/single_frequency_operation.png"
alt="article" style="width:400px"></a>

For Wikipedia, e.g. in the section "==External links==":

* [https://www.rp-photonics.com/single_frequency_operation.html
article on 'Single-frequency operation' in the RP Photonics Encyclopedia]