RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

Small-signal Gain

Definition: optical gain for small signal intensities, where no amplifier saturation occurs

German: Kleinsignalverstärkung

Categories: optical amplifiers, physical foundations

Formula symbol: gss

Units: %, dB

How to cite the article; suggest additional literature

The small-signal gain of a gain medium (e.g. a laser medium in a laser or amplifier) is the gain obtained for an input signal which is so weak that it does not cause any gain saturation. In continuous-wave operation, this means that everywhere in the gain medium the signal intensity is well below the saturation intensity.

In a four-level laser gain medium with negligible ASE and no parasitic lasing, the small-signal gain in the steady state, as measured in decibels, is usually proportional to the absorbed pump power and to the stored energy. The threshold of a laser or an optical parametric oscillator is reached when the small-signal gain equals the total resonator losses. In a Q-switched laser, a high small-signal gain helps to achieve a short pulse duration. In a high-gain amplifier (e.g. a fiber amplifier), the small-signal gain achievable is often limited by amplified spontaneous emission (ASE) or by parasitic lasing.

See also: gain, laser threshold, threshold pump power
and other articles in the categories optical amplifiers, physical foundations

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: