RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Spectral Beam Combining

<<<  |  >>>

Definition: a class of methods for beam combining, based on wavelength-sensitive beam combiners

Categories: general optics, lasers, methods

How to cite the article; suggest additional literature

The term spectral beam combining (also called wavelength beam combining or simply wavelength combining, or incoherent beam combining) denotes a class of techniques within the more general area of power scaling by beam combining. The goal is to combine several high-power laser beams so as to obtain a single beam not only with correspondingly higher power but also with more or less preserved beam quality and thus with increased brightness. An alternative class of techniques, discussed in a separate article, is coherent beam combining.

Principle of Spectral Beam Combining

The general principle of spectral beam combining is to have several beams with non-overlapping optical spectra and combine them at some kind of wavelength-sensitive beam combiner. Examples of such combiners are prisms and diffraction gratings, which can deflect incident beams according to their wavelengths so that subsequently these all propagate in the same direction. Other approaches rely on optical components with wavelength-dependent transmission, such as dichroic mirrors or volume Bragg gratings.

For combining the outputs of a large number of different emitters of the same type, each emitter (laser) needs to have an emission bandwidth which is only a small fraction of the gain bandwidth, because a larger bandwidth would lead to a reduced beam quality. Furthermore, the beam combiner must have a sufficiently strong dispersion (e.g. angular dispersion), and the wavelengths of all emitters must be sufficiently stable.

spectral beam combination with diffraction grating

Figure 1: Setup for wavelength beam combination with a diffraction grating. Each wavelength has its own diffraction angle at the grating, and the emitters automatically tune to the wavelengths corresponding to their location. For clarity, only the beams of the outer emitters are shown.

Some approaches build on emitters which are independently tuned to some wavelength, and their outputs are aligned to reach the beam combiner (e.g. a diffraction grating) at the corresponding angle. It can be advantageous, however, to modify the scheme such that each emitter automatically adjusts its wavelength according to its spatial position. This is achieved e.g. with a setup developed at MIT Lincoln Laboratory [1, 5], as shown in Figure 1.

This principle was first applied to laser diodes in the form of diode arrays [1], but is also suitable for fiber lasers [3]. Whereas diode lasers have the advantages of being directly electrically pumped and of being very efficient, fiber-based systems can have a higher power per emitter, and the emitters can have a broader gain bandwidth, so that much higher powers are possible.

Of course, power scalability can be limited, e.g. by thermal effects on the wavelength-sensitive beam combiner. For transmission gratings, in particular, this introduces severe limitations, whereas reflection gratings could work at power levels of at least 100 kW, because they absorb less power and can be cooled from the back side.

General Remarks

Compared with coherent beam combining, the technique of spectral beam combining has the great advantage of not requiring mutual temporal coherence of the combined beams. This eliminates some important technical challenges and makes it much easier to obtain stable operation at high power levels. On the other hand, the multi-wavelength nature of the output is then unavoidable, which may not matter for some applications while excluding others where a narrow-bandwidth output is required.


[1]V. Daneu et al., “Spectral beam combining of a broad-stripe diode laser array in an external cavity”, Opt. Lett. 25 (6), 405 (2000)
[2]E. J. Bochove, “Theory of spectral beam combining of fiber lasers”, IEEE J. Quantum Electron. 38 (5), 432 (2002)
[3]S. J. Augst et al., “Wavelength beam combining of ytterbium fiber lasers”, Opt. Lett. 28 (5), 331 (2003)
[4]C. Hamilton et al., “High power laser source with spectrally beam combined diode laser bars”, Proc. SPIE 5336, 1 (2004)
[5]B. Chann et al., “Near-diffraction-limited diode laser arrays by wavelength beam combining”, Opt. Lett. 30 (16), 2104 (2005)
[6]T. Y. Fan, “Laser beam combining for high-power, high-radiance sources”, IEEE J. Sel. Top. Quantum Electron. 11 (3), 567 (2005)
[7]T. H. Loftus et al., “Spectrally beam-combined fiber lasers for high-average-power applications”, IEEE J. Sel. Top. Quantum Electron. 13 (3), 487 (2007)
[8]R. K. Huang et al., “High-brightness wavelength beam combined semiconductor laser diode arrays”, IEEE Photon. Technol. Lett. 19, 209 (2007)
[9]A. Sevian et al., “Efficient power scaling of laser radiation by spectral beam combining”, Opt. Lett. 33 (4), 384 (2008)
[10]O. Andrusyak et al., “Spectral combining and coherent coupling of lasers by volume Bragg gratings”, IEEE Sel. Top. Quantum Electron. 15 (2), 344 (2009)
[11]R. K. Huang et al., “Ultra-high brightness, wavelength-stabilized, kW-class fiber-coupled diode laser”, Proc. SPIE 7918, 791810 (2011), doi:10.1117/12.887259
[12]Y. Xiao et al., “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks”, Opt. Express 20 (3), 3296 (2012)

(Suggest additional literature!)

See also: beam combining, coherent beam combining, power scaling of lasers, high-power lasers
and other articles in the categories general optics, lasers, methods

In the RP Photonics Buyer's Guide, 3 suppliers for equipment for spectral beam combining are listed.

Dr. R. Paschotta

This encyclopedia is authored by Dr. RĂ¼diger Paschotta, the founder and executive of RP Photonics Consulting GmbH. Contact this distinguished expert in laser technology, nonlinear optics and fiber optics, and find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, or staff training) and software could become very valuable for your business!

If you like this article, share it with your friends and colleagues, e.g. via social media: