Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

Spectral Response of a Photodetector

Definition: the range of optical wavelengths for which a photodetector is sensitive

German: spektrale Empfindlichkeit eines Photodetektors

Category: light detection and characterization

How to cite the article; suggest additional literature


The spectral response of a photodetector is the range of optical wavelengths or frequencies in which the detector has a significant responsivity. There is no universally defined criterion for the minimum responsivity; it may, for example, be taken as one tenth of the maximum responsivity, or even much less. In other cases, a drop of at most 50% may be acceptable for an application. Due to that uncertainty, given specifications can vary even for the same device.

Note that the spectral range quoted for an optical power meter, for example, may be smaller than the spectral response: there may be wavelength regions where the detector reacts, but not with a calibrated response.

Typical Limiting Factors

Some typical limiting factors for the spectral response of photodetectors are:

  • Many types of detectors, for example all photoemissive detectors and all semiconductor-based detectors containing a p–n junction, work only for photon energies above a certain level. That condition translates into some maximum optical wavelength.
  • Such a limitation does not occur for thermal detectors, which therefore can exhibit a very broad and smooth spectral response. There, however, the spectral response may be limited by the wavelength-dependent absorption of the used absorber.
  • Many detectors have an optical window, e.g. for protecting the light-sensitive area or for preserving a vacuum inside the detector, and that window has a limited wavelength range with high transmissivity.
  • Sometimes, the spectral response of a photodetector is intentionally limited with an optical filter, because a response to certain other wavelengths is undesirable for a particular application. In some cases, one wants to avoid degradation effects caused by short-wavelength light (e.g. ultraviolet light).

For a given material, e.g. of a photocathode, the spectral response may substantially vary due to different factors, e.g. the applied thickness of a layer, an additional reflector or details of the material fabrication process.

See also: photodetectors, responsivity
and other articles in the category light detection and characterization

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: