Encyclopedia … combined with a great Buyer's Guide!

Specular Reflection

Definition: reflection of light where the angle of reflected light equals the angle of incident light, but on the opposite side of the surface normal

Alternative term: regular reflection

German: spiegelnde Reflexion

Category: general optics


How to cite the article; suggest additional literature

URL: https://www.rp-photonics.com/specular_reflection.html

specular reflection
Figure 1: Specular reflection at a flat surface, where the output angle equals the angle of incidence.

The classical type of light reflection is that of specular reflection, from the Latin word speculum (mirror), or alternatively regular reflection. That kind of reflection is encountered on smooth surfaces, e.g. of polished metal or glass pieces, including cases with total internal reflection, or on surfaces of liquids. Here, the angle of the reflected light, as measured against the surface normal, equals that angle for the incident light (see Figure 1). That situation is usually found with high accuracy on various types of flat mirrors. For curved reflecting surfaces, one also obtains a specular reflection; the angles of incidence and output are then measured against the local normal direction.

The common law of reflection (output angle = angle of incidence) is related to the fact that the component of the wave vector along the reflecting surface is preserved.

Other Kinds of Reflection, Involving Scattering of Light

If the reflecting surface is nearly flat, but not completely flat, the output light may be spread over some range of angles; that is called diffuse scattering. With a substantially rough surface, causing significant scattering, there can be a substantial angular range, for example with a width of 10°. Particularly volume diffusers, but also some matte paints, tend to produce even a much wider angular distribution of scattered light, often even approaching the standard case of a Lambertian scatterer. That can be considered as the opposite of specular reflection: perfectly diffusing reflection. There can be also a combination of specular and diffuse reflection; an object with such properties exhibits specular highlights (depending on the illumination conditions) in addition to the appearance generated by diffuse scattering.

Specular reflections can appear much brighter than diffuse reflections, when seen from a large distance because the reflected light is concentrated to a smaller range of directions. (That can be a problem in the context of laser safety.) On the other hand, specular reflections remain unnoticed for an absorber if the reflected light misses his or her eyes.

Condition for Specular Reflection

Because the wavelengths of visible light are rather small (well below 1 μm), pure specular reflection requires a high degree of surface flatness – much more than for microwaves, for example. Therefore, a metal surface, for example, needs to be very carefully polished to obtain nearly perfect specular reflection.

Reflections on Diffraction Gratings

A modified form of specular reflection can occur on diffraction gratings. Here, the output angle can substantially deviate from the angle of incidence, and also depends on the optical wavelength, but there is again no diffuse reflection in the ideal case.

Specular Reflection in Imaging

Specular reflections can be used for imaging – for example, in reflective telescopes. In contrast to diffuse reflection, where random angular changes are introduced, the image information is preserved upon specular reflection. However, diffuse reflectors can still be useful as screens in certain imaging instruments; such a screen needs to be placed in an image plane.

See also: mirrors, scattering, reflectivity

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!

Code for Links on Other Websites

If you want to place a link to this article in some other resource (e.g. your website, social media, a discussion forum, Wikipedia), you can get the required code here.

HTML link on this article:

<a href="https://www.rp-photonics.com/specular_reflection.html">
Article on Specular reflection</a>
in the <a href="https://www.rp-photonics.com/encyclopedia.html">
RP Photonics Encyclopedia</a>

With preview image (see the box just above):

<a href="https://www.rp-photonics.com/specular_reflection.html">
<img src="https://www.rp-photonics.com/previews/specular_reflection.png"
alt="article" style="width:400px"></a>

For Wikipedia, e.g. in the section "==External links==":

* [https://www.rp-photonics.com/specular_reflection.html
article on 'Specular reflection' in the RP Photonics Encyclopedia]