RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

Laser Design: Side Product or the Basis of Laser Development?

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on laser development and laser design

Everyone has heard about such laser development projects which develop into a nightmare, with nasty unexpected problems, requiring measures which cure one problem while exacerbating another one, finally leading to time-consuming revisions, so that the market entry is delayed further and further. The resulting costs are enormous: not only spending many additional man months and keeping the costly infrastructure occupied with that project, but also delaying the time where the product brings revenue, apart from losing the waiting customers' confidence. In the worst case, a competitor uses the time to get his product placed …

The origin of such problems is probably very often related to the role attributed to laser design within the laser development. Laser design appears frequently to be considered as a kind of side product of the development work, perhaps just written up some time after the actual development; the work itself is based on some degree of experience, some reasonable principles (e.g. trying it out step by step), but to some significant extent also on trial and error.

The cure is then to redefine the role of laser design to support the lab work rather than just to somehow result from it. Obviously, for that purpose it has to be developed first – not in the lab, but on the desk. This involves quantitative checks of the central issues; not necessarily full-blown numerical modeling, but at least a number of relatively simple calculations e.g. concerning the required pump and laser intensities, the laser gain and optimum output coupler transmission, the balance of pulse-shaping effects (in a mode-locked laser), etc. When problems are identified at this stage, they will often not require more than a few hours to be solved. In the lab, this process is much more costly: it is often far more difficult to correctly diagnose a problem there, and more tedious to try out various measures.

The deliverable of the laser design work is a clear design report, to be discussed with all the involved engineers. Of course, there can still be unexpected problems, but the likelihood of significant delays can be strongly reduced with proper preparations.

Particularly in smaller laser companies, there are plenty of possible reasons why resources are wasted by engaging in prototype building without being properly prepared:

But be assured that the really successful laser companies have learned to deal with these obstacles and are always making sure that an experienced expert – whether in house or hired as a consultant – takes care of the critical design stages from the beginning.

See the above referenced encyclopedia articles for more details. Besides, there is a related Spotlight article on the issue of time to market.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow