RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

The Photonics Spotlight

Reflection Spectrum of Tilted Dielectric Mirrors

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on laser mirrors and dielectric mirrors

Dielectric multilayer mirrors can be highly reflecting only in a limited spectral bandwidth. When such a mirror, designed for use with normal incidence of the light, is tilted against an incident beam, the reflection features are shifted toward shorter wavelengths.

At a first glance, one might actually expect the opposite effect, following the (flawed) argument that the optical path length between different layers of the mirror coating is increased, leading to a larger phase delay, which could be compensated by using a longer wavelength. So the reflection features should be shifted toward longer wavelengths – just the opposite of what is observed! What is wrong here?

A closer look shows where the above argument is wrong: following a ray from one layer to the next one under some angle, and back to the first layer along a “reflected” beam, we actually don't get back to the place where we started, but rather to some offset position. But it doesn't make sense to compare the phases of two beams as measured at two different positions!

For a correct argument, we have to consider e.g. two beams as reflected from two subsequent layer interfaces, and compare their phases at the same point. Doing this, we find that the phase delay actually becomes smaller for angled incidence. Another way to understand the issue is to consider the phase shift along a direction perpendicular to the coating layers. This can be calculated using the component of the k vector perpendicular to the surface. And the magnitude of that is obviously reduced for tilted incidence.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media: