RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

Sponsorship opportunity: support this popular resource, which serves the whole photonics community, and get recognition!

The Photonics Spotlight

Noise Figure of Amplifiers

Posted on 2007-01-27 as a part of the Photonics Spotlight (available as e-mail newsletter!)

Permanent link: https://www.rp-photonics.com/spotlight_2007_01_27.html

Author: Dr. Rüdiger Paschotta, RP Photonics Consulting GmbH

Abstract: The article discusses what the noise figure of an amplifier really means, and uses the example of a chain of two high-gain amplifiers. It turns out that an important ingredient of the definition of the noise figure is often overlooked.

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on noise figure, amplifier noise, amplifiers

The noise figure of an amplifier (e.g. a fiber amplifier) is often said to simply be the amount by which the signal-to-noise ratio of an input signal is degraded. Then, however, it is not understandable how the noise figure of an ideal high-gain four-level amplifier can always be 3 dB. In particular, how about two such amplifiers in series? If the signal-to-noise ratio is degraded twice, the noise figure should be 6 dB. But considering the two amplifiers as a single amplifier (made as an amplifier chain), it should be 3 dB. It is not conceivable why e.g. two fiber amplifiers in series should be worse concerning amplifier noise than a single longer amplifier.

The confusion arises from the frequently encountered omission of an important condition: the noise figure is the amount by which the signal-to-noise ratio of an input signal is degraded, if the input signal is shot-noise limited. In a chain made of two high-gain amplifiers, the first device may have a shot-noise limited input. Its output will then have strongly amplified quantum noise, plus some excess noise according to the noise figure. This means that the input of the second amplifier has strong excess noise (i.e., noise at a level high above the shot noise level), so that this amplifier won't degrade the noise performance further if it also has a noise figure of e.g. 3 dB.

The exact analog of this occurs with electronic amplifiers, only that quantum noise has to be replaced with thermal noise. Obviously, the apparent mystery as described above is not one of these quantum mysteries, and is relatively simple to resolve. And the understanding of such issues is obviously quite important when considering amplifier noise, e.g. in photodetection and particularly in optical fiber communications.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page and cite it, because its location is permanent. See also the RP Photonics Encyclopedia.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: