Encyclopedia … combined with a great Buyer's Guide!

Sponsoring this encyclopedia:     and others

Beam Quality Measurements Can Easily Go Wrong

Posted on 2007-06-11 as a part of the Photonics Spotlight (available as e-mail newsletter!)

Permanent link: https://www.rp-photonics.com/spotlight_2007_06_11.html

Author: , RP Photonics Consulting GmbH

Abstract: This article emphasizes that a number of details have to be observed to obtain correct characterization of a laser beam, e.g. concerning beam quality. This is vital for getting reliable predictions of beam propagation e.g. through some focusing optics.

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on beam quality, M2 factor, beam radius

It is well known that the beam quality of a laser beam can be measured by recording the caustic, i.e., the beam radius as a function of position along the beam, and then fitting a relatively simple function to these data. Unfortunately, the obtained results are very often quite wrong, because many details have to be observed. Some examples for possible errors are:

Such requirements are defined in great detail in ISO Standard 11146. “Why should I care about that standard?”, some people may ask. The answer is simple: because you want correct values, whether you use the data yourself, or publish them. And that isn't simply a matter of definition; the details of ISO 11146 have not been determined just arbitrarily, but with good reasons. In particular, they are made so that the calculation of beam propagation e.g. through some focusing optics can bring reliable results. Only with a correctly determined M2 factor (beam quality factor), you can describe the beam propagation as for Gaussian beams, but inserting M2 times the wavelength for the actual optical wavelength.

It is easy to imagine what can happen otherwise. As an example, you characterize the output beam of a laser diode and use the result to select and place the optics for focusing the pump beam of a diode-pumped laser. As a sanity check, you characterize the obtained beam and find that the focus is not as expected – and not suitable. So you somewhat modify your optics until you obtain the right beam parameters. This iteration is time-consuming. If you skip this, however, and just go with building you laser, it can be even worse – see the previous Spotlight article “Characterize Your Pump Beam”! So you better start with properly characterizing the pump beam, observing all the details in order to avoid the more troublesome extra loops.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page and cite it, because its location is permanent. See also the RP Photonics Encyclopedia.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.


If you like this article, share it with your friends and colleagues, e.g. via social media:

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: