Encyclopedia … combined with a great Buyer's Guide!

Sponsoring this encyclopedia:     and others

An OPO Without Resonator Mirrors

Posted on 2007-08-23 as a part of the Photonics Spotlight (available as e-mail newsletter!)

Permanent link: https://www.rp-photonics.com/spotlight_2007_08_23.html

Author: , RP Photonics Consulting GmbH

Abstract: Researchers at KTH in Stockholm have demonstrated the first mirrorless optical parametric oscillator (OPO). This is a device with remarkable physical properties, and its fabrication relied on the feat to periodically pole a KTP crystal with a very fine period.

Dr. Rüdiger Paschotta

Ref.: C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator”, Nature Photonics 1, 459 (2007); encyclopedia articles on optical parametric oscillators

The idea has been around for quite a while, but now it has been realized in an experiment at KTH in Stockholm: an optical parametric oscillator which does not have a resonator. This is not just a high-gain device, acting as an optical parametric generator, but something more subtle: quasi-phase matching in a periodically poled nonlinear crystal with a very small poling period allowed to phase-match an interaction where the idler propagates in a direction opposite to that of signal and pump beams. The signal wave then needs to propagate only in a single direction, so that a resonator is not required. The same holds for the idler.

The great technical difficulty behind that experiment was to fabricate a KTP crystal with a poling period of ≈0.8 μm. A photolithographic technique has been developed for that remarkable result; note that the poling periods in QPM crystals are usually at least a few microns, often tens of microns, making the fabrication much easier (but still not very easy!). Making a fine electrode structure with photolithography is only the first issue to overcome; it is not obvious that the crystal material would develop a high quality domain structure.

It is not yet clear how useful such mirrorless OPOs will be in any application, but at least one can realize remarkable phase-matching and tuning properties (resulting e.g. in very narrow-band idler pulses) as well as the practical advantage of not requiring resonator mirrors and their alignment. For sure, it is nice physics!

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page and cite it, because its location is permanent. See also the RP Photonics Encyclopedia.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.


If you like this article, share it with your friends and colleagues, e.g. via social media:

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: