RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

The Gain Bandwidth of Laser Crystals and Glasses

Dr. Rüdiger Paschotta

Ref.: encyclopedia article on gain bandwidth

At a first glance, one might really not expect any difficulties with the term gain bandwidth: isn't it simply the width of the frequency or wavelength region where some laser medium provides gain? Well, basically it is, only I suggest to drop the word “simply”.

At the heart of most of the confusion in the literature is the fact that a gain spectrum is hardly ever shaped like a rectangle, with a constant gain within some bandwidth, and no gain outside. This aspect alone might not look frightening; in optics, we are very much used to such smooth distributions and are familiar with appropriate definitions e.g. for a beam radius or a pulse duration. One might expect that we only have to agree on some percentage of the peak gain and simply measure the gain bandwidth as the difference of the two frequencies or wavelengths where the gain has dropped to that level. However, additional complications arise:

A reader of my article on the term gain bandwidth once wrote in his feedback that apparently it takes a physicist to make things so complicated. Well, my view is somewhat different: these things are rather complicated by their nature, and it takes a physicist to clarify the situation. Quite obviously, it doesn't help to keep things simple by ignoring all these pitfalls and naively dealing with published specifications. This article should have convincingly shown that when dealing with a term like “gain bandwidth”, one needs all the following:

Don't forget the latter – in the end, we should be able to apply that knowledge in practice. As an example, it is a both nontrivial and very important question whether the pulse duration achieved with a particular mode-locked laser is limited by the gain bandwidth or by something else, such as optical nonlinearities. In the latter case, it can be a great waste of time to experiment with more broadband gain media in an attempt to get shorter pulses.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow