RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

Frequency Doubling: Long Pulses Cause Trouble

Dr. Rüdiger Paschotta

Ref.: S. Favre et al., “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser”, IEEE J. Quantum Electron. 39 (6), 733 (2003); encyclopedia articles on frequency doubling and photodarkening

Frequency doubling can be efficiently performed either by intracavity frequency doubling in a continuous-wave laser, or with a Q-switched laser (intracavity or extracavity). It thus seems surprising what the paper cited above reports: frequency doubling with long pulses is difficult – at least at high power levels.

The authors worked with a powerful Nd:YAG slab laser, producing pulses with 0.1-5 μs duration and a peak power of 1-2 kW. The high average power forced them to use extracavity doubling, as the thermal effects in the nonlinear crystal (made of KTP) would have been to strong to tolerate them within the laser resonator. With proper focusing, the optical intensity could easily have been made high enough for efficient doubling, but the trouble was that crystal damage set in well before a high efficiency was achieved. The problem is apparently the following:

This explains why frequency doubling with nanosecond pulses works better. In continuous-wave operation, the situation should be even worse, as the color centers would have even much more time to build up. A solution can be intracavity doubling, where far lower optical intensities are required for efficient conversion: the non-converted infrared light is “recycled” in the laser resonator. However, intracavity doubling is limited in average power, as mentioned above.

Of course, one may use a crystal material which does not have these temporary color centers. The authors reported slightly better results with LBO, but unfortunately without elaborating on damage and induced absorption. LBO is probably better in this respect, although it does need to be operated with higher intensities due to its lower nonlinearity. Even if damage is no issue, it is sometimes difficult to reach sufficiently high intensities with long pulses or in continuous-wave operation.

So we see that frequency doubling long pulses (and in continuous-wave operation) can be problematic. The Spotlight article of 2007-03-05 explained why very short pulses are also involving difficulties – for entirely different reasons.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow