RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

The Photonics Spotlight

Mode-Locked Lasers: Lower Average Powers in Shorter Pulses

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on mode-locked lasers, ultrafast lasers, ultrashort pulses

It is very common that those mode-locked lasers generating the shortest pulses tend to offer lower average output powers and pulse energies. This could be surprising, since there is no direct relation between the average power capability and the pulse duration. However, there are various reasons behind the mentioned correlation. Here are some examples:

These are just some typical issues, which introduce trade-offs between different performance parameters of a laser design. Any laser design involves many different aspects with many more or less obvious relations between those, and any dropped requirement (such as a particularly short pulse duration) may allow the designer to shift certain properties so that better performance in other aspects can be achieved. And of course the opposite holds as well: demanding more on one side can compromise other features – at least when the overall design is optimized, so that no room for general improvement is wasted anywhere.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media: