RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

The Photonics Spotlight

Stronger Focusing Avoids SESAM Damage

Posted on 2008-07-02 as a part of the Photonics Spotlight (available as e-mail newsletter!)

Permanent link: https://www.rp-photonics.com/spotlight_2008_07_02.html

Author: Dr. Rüdiger Paschotta, RP Photonics Consulting GmbH

Abstract: A curious phenomenon is that a SESAM for passive mode locking of a solid-state laser sometimes lives longer when being operated with a more tightly focused resonator mode. The article explains this on the basis of Q-switching instabilities, which are then more firmly suppressed.

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on semiconductor saturable absorber mirrors, passive mode locking

The following curious situation can sometimes be observed when trying passive mode locking of a solid-state laser with a semiconductor saturable absorber mirror (SESAM): the SESAM works fine when operated with a relatively strongly focused laser beam, but is quickly destroyed when the resonator design is modified such that the mode area on the SESAM becomes larger. This is really against all intuition: weaker focusing should lead to lower optical intensities, and thus reduce rather than increase the risk of damage!

The reason behind this peculiarity is that for too weak focusing on the SESAM, the mode-locking process can exhibit Q-switching instabilities. Here, the pulse energy undergoes strong fluctuations, and some of the pulses are much more intense than the average. Therefore, the peak intensity on the SESAM becomes even higher, despite the larger mode area.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page and cite it, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media: