RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

Stability of Resonators – an Ambiguous Term

Dr. Rüdiger Paschotta

Ref.: encyclopedia articles on optical resonators, laser resonators, stability zones, alignment sensitivity; Spotlight article of 2006-11-28

In the context of optical resonators, stability is a property with very different meanings:

The trouble is that these kinds of stability are extremely different:

In some cases, the requirements for stability in both senses can even be conflicting. In particular, Q-switched solid-state lasers are mechanically most stable when built with a very compact (possibly even monolithic) resonator setup. This, however, together with the requirement of having a sufficiently large effective mode area on all optical components (the laser crystal, the Q-switch, dielectric mirrors) may force one to operate the laser near such an sensitive stability edge. That can be a severe problem, making it very hard to obtain a robust setup, despite the good mechanical stability.

Obviously, it is essential in such situations to understand very well the involved trade-offs in order to find the overall best technical solution.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow