RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

The Photonics Spotlight

Creating a Top-hat Laser Beam Focus

Posted on 2010-04-08 as a part of the Photonics Spotlight (available as e-mail newsletter!)

Permanent link: https://www.rp-photonics.com/spotlight_2010_04_08.html

Author: Dr. Rüdiger Paschotta, RP Photonics Consulting GmbH

Abstract: Curious behavior is observed when a nearly rectangular beam shape is generated. This, however, can be well understood considering Fourier optics.

Ref.: encyclopedia articles on laser beams, beam waist, beam shapers

Dr. Rüdiger Paschotta

Some applications require a laser beam with a top-hat beam profile at the focus. If you believe that the focus is just a demagnified version of the original beam, you may try to get a rectangular shape there (e.g., using a simple aperture) and focus that down. You will fail, however, at least when you focus tightly: the result will be a spot with soft boundaries and rings around it. You should rather use a special kind of beam shaper, which will preserve a soft profile in the large beam, leading to a rectangular shape only in the focus.

In our theoretical reasoning, we can go the opposite way, starting with a super-Gaussian profile with flat wavefronts (at z = 0), and calculate how it evolves. (The super-Gaussian profile with a high exponent, here 8, approximates a rectangular shape.) The evolution of the intensity profile is illustrated in the figure below.

beam evolution

(Note that the color tones have been rescaled for each image, as otherwise little could be seen for the largest profile.)

Curiously, the profile first contracts, before it expands again, then acquiring a smooth shape.

The initial contraction can be understood by considering the Fourier-transformed profile, which exhibits a center part and rings with alternating phase. (This is well known for rectangular profiles, not that different for high-order super-Gaussian profiles.) Initially, these rings contribute amplitudes with opposite signs to the on-axis electric field in real space. After some distance, however, the contribution from the first (and strongest) ring in Fourier space gets approximately in phase with the contribution of the central part, so that a higher peak intensity at the center is obtained. The beam area has to become smaller then, as the total power is conserved.

So if you start with a large approximately Gaussian beam, having the right phase profile, the beam will first contract strongly, then expand and form a nearly rectangular shape, the contract again, and finally expand with a smooth shape. Quite a strange behavior, which however can be well understood considering Fourier optics.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page and cite it, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow