RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

The Photonics Spotlight

Fiber Amplifiers: Modeling of Ultrashort Pulse Amplification with Saturation of Wavelength-dependent Gain

Ref.: R. Paschotta, “Modeling of ultrashort pulse amplification with gain saturation”, Opt. Express 25 (16), 19112 (2017)

Dr. Rüdiger Paschotta

Numerical models for the laser amplification of ultrashort pulses have been developed over many years. Surprisingly, it seems that for one relatively fundamental issue in this context there has not been a good solution until now. The point is how to simultaneously treat gain saturation and the wavelength dependencies of gain and the optical fields.

The fundamental difficulty is that gain saturation is essentially a time-dependent effect and should thus be described in the time domain, whereas frequency dependencies of course suggest to work in the frequency domain. But how to formulate (not just solve) a differential equation which correctly addresses the time and frequency domain at the same time?

I encountered that problem in the context of the development of our software RP Fiber Power, which since version V4 can simulate the amplification of ultrashort pulses e.g. in fiber amplifiers. In most cases, the problem is not severe because the pulse energies are too low for causing substantial gain saturation. In some chirped-pulse amplifier systems, however, we do see substantial gain saturation (as is necessary for efficient power conversion) in conjunction with a large gain and optical bandwidth. Note that without strongly chirped pulses in the fiber, one cannot have strong gain saturation of femtosecond pulses, since the applicable peak intensities are limited by fiber nonlinearities (in particular by nonlinear self-focusing) so that only relatively long (temporally stretched) pulses can cause substantial gain saturation.

When reviewing the literature, I found that a number of different approaches has been used to address that challenge, but all of them appears to have serious limitations:

I finally developed a new algorithm which has the following advantages:

Essentially, the new method requires some “soft” temporal slicing of pulses, where for each slice separately one applies a Fourier transform to get into the frequency domain and apply the frequency-dependent gain there; another Fourier transform leads back to the time domain. In the end, all the slices are properly combined to obtain the amplified pulse in the time domain. Some technical details of the implementation are not straightforward; various technical issues had to be solved in order to obtain an accurate and robust algorithm. That is now used in the RP Fiber Power software.

I decided to publish the details in a scientific paper, which has just appeared in an open-access journal – see the reference given at the beginning of the article. (See also the references therein if you want to learn more about the previously described algorithms.) Although that publication will allow competitors to implement the algorithm themselves, I think it is good that everyone can verify how solid scientific expertise is the basis of our simulation software.

This article is a posting of the Photonics Spotlight, authored by Dr. Rüdiger Paschotta. You may link to this page, because its location is permanent. See also the Encyclopedia of Laser Physics and Technology.

Note that you can also receive the articles in the form of a newsletter or with an RSS feed.

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow