Encyclopedia … combined with a great Buyer's Guide!

Stabilization Of Lasers

Definition: measures applied to lasers in order to improve their stability in terms of output power, optical frequency, or other quantities

German: Stabilisierung von Lasern

Categories: laser devices and laser physics, fluctuations and noise, methods


How to cite the article; suggest additional literature

URL: https://www.rp-photonics.com/stabilization_of_lasers.html

As lasers exhibit various kinds of laser noise, which can be detrimental in applications, it is sometimes necessary to use techniques for suppressing noise and stabilizing certain laser parameters. There are active and passive stabilization schemes, as discussed in the following. Concerning frequency stabilization, see the article on frequency-stabilized lasers for more details.

See also the article on synchronization of lasers, which treats both timing and phase synchronization.

Active Laser Stabilization

Active stabilization schemes usually involve some kind of electronic feedback (or sometimes feedforward) system, where fluctuations of some parameters are converted to an electronic signal, which is then used to act on the laser in some way.

Examples are:

  • The output power of a laser may be stabilized with a scheme as shown in Figure 1. The laser power is monitored with a photodiode and corrected e.g. via control of the pump power or the losses in or outside the laser resonator. In this way, both spiking after turn-on and the intensity noise under steady-state conditions can be reduced.
  • Note that it is also possible to reduce intensity noise by acting on the output beam instead of the laser itself; see the article on noise eaters.
power stabilization for a laser
Figure 1: Diode-pumped solid-state laser with a feedback system stabilizing the output power.
  • The optical frequency of a single-frequency laser, or the frequency of one line of the frequency comb from a mode-locked laser, can be stabilized via resonator length control. The feedback signal can be obtained e.g. by recording a beat note with a second laser, by measuring the power which is transmitted or reflected at a very stable reference cavity or another kind of interferometer, or by measuring the transmission of a gas cell (e.g. an iodine cell), possibly using Doppler-free laser absorption spectroscopy. A frequently used technique for generating an error signal with a reference cavity is the Pound–Drever–Hall method [3, 4], using a weak phase modulation of the light which is sent to the reference cavity. A scheme not requiring such modulation is the Hänsch–Couillaud method [2]. Another method is tilt locking, where spatial mode interference is utilized [12, 16, 30]. (See the article on frequency-stabilized lasers.)
  • The stabilization of the carrier–envelope offset phase or frequency of a mode-locked laser (CEO stabilization) can be based on, e.g., a phase measurement with an <$f-2f$> interferometer and feedback via some wedge or tilted mirror in the laser resonator. This kind of stabilization is important for frequency metrology.
  • The timing of the pulses (→ timing jitter) from a mode-locked laser can be monitored by comparing the phases of a photodiode signal and of an electronic reference oscillator, and stabilized e.g. via cavity length control.
  • Stabilization of the pointing direction of the output beam is possible via a beam position measurement (e.g. with a four-quadrant photodiode) and correction via piezo-controlled resonator mirrors.

The stability which is achieved with such active systems is determined by factors such as photodetection noise, the bandwidth of control elements, the design of the feedback electronics, and the stability of the reference standards (e.g. optical reference cavities).

Passive Laser Stabilization

Passive schemes do not involve electronics and are based on purely optical effects. Examples are:

The optical frequency of a laser may also be stabilized by injection locking, i.e., injecting a beam with a highly stable optical frequency from another laser.


The RP Photonics Buyer's Guide contains 18 suppliers for laser stabilization devices. Among them:


[1]A. D. White, “Frequency stabilization of gas lasers”, IEEE J. of Quantum Electronics 1 (8), 349 (1965), DOI:10.1109/JQE.1965.1072246
[2]T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity”, Opt. Commun. 35 (3), 441 (1980) (Hänsch–Couillaud technique), DOI:10.1016/0030-4018(80)90069-3
[3]R. W. P. Drever, J. L. Hall et al., “Laser phase and frequency stabilization using an optical resonator”, Appl. Phys. B 31, 97 (1983), DOI:10.1007/BF00702605
[4]G. C. Bjorklund et al., “Frequency-modulation (FM) spectroscopy”, Appl. Phys. B 32 (3), 145 (1983), DOI:10.1007/BF00688820
[5]C. Salomon et al., “Laser stabilization at the millihertz level”, J. Opt. Soc. Am. B 5 (8), 1576 (1988), DOI:10.1364/JOSAB.5.001576
[6]J. Dirscherl et al., “A dye laser spectrometer for high resolution spectroscopy”, Opt. Commun. 91, 131 (1992), DOI:10.1016/0030-4018(92)90114-7
[7]T. Day et al., “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Pérot interferometer”, IEEE J. Quantum Electron. 28 (4), 1106 (1992), DOI:10.1109/3.135234
[8]N. Uehara and K. I. Ueda, “193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers”, Opt. Lett. 18 (7), 505 (1993), DOI:10.1364/OL.18.000505
[9]C. C. Harb et al., “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser”, IEEE J. Quantum Electron. 30 (12), 2907 (1994), DOI:10.1109/3.362718
[10]S. Seel et al., “Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level”, Phys. Rev. Lett. 78 (25), 4741 (1997), DOI:10.1103/PhysRevLett.78.4741
[11]Y. Shevy and H. Deng, “Frequency-stable and ultranarrow-linewidth semiconductor laser locked directly to an atom-cesium transition”, Opt. Lett. 23 (6), 472 (1998), DOI:10.1364/OL.23.000472
[12]D. A. Shaddock, M. B. Gray and D. E. McClelland, “Frequency locking a laser to an optical cavity using spatial mode interference”, Opt. Lett. 24 (21), 1499 (1999), DOI:10.1364/OL.24.001499
[13]B. C. Young et al., “Visible lasers with subhertz linewidths”, Phys. Rev. Lett. 82 (19), 3799 (1999), DOI:10.1103/PhysRevLett.82.3799
[14]S. Kasapi et al., “Sub-shot-noise frequency-modulation spectroscopy by use of amplitude-squeezed light from semiconductor lasers”, J. Opt. Soc. Am. B 17 (2), 275 (2000), DOI:10.1364/JOSAB.17.000275
[15]E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization”, Am. J. Phys. 69 (1), 79 (2001), DOI:10.1119/1.1286663
[16]B. J. J. Slagmolen et al., “Frequency stability of spatial mode interference (tilt) locking”, IEEE Journal of Quantum Electronics 38 (11), 1521 (2002), DOI:10.1109/JQE.2002.804267
[17]F. W. Helbing et al., “Carrier–envelope offset phase-locking with attosecond timing jitter”, J. Sel. Top. Quantum Electron. 9 (4), 1030 (2003), DOI:10.1109/JSTQE.2003.819104
[18]St. A. Webster et al., “Subhertz-linewidth Nd:YAG laser”, Opt. Lett. 29 (13), 1497 (2004), DOI:10.1364/OL.29.001497
[19]J. Rollins et al., “Solid-state laser intensity stabilization at the 10−8 level”, Opt. Lett. 29 (16), 1876 (2004), DOI:10.1364/OL.29.001876
[20]H. Stoehr et al., “Diode laser with 1 Hz linewidth”, Opt. Lett. 31 (6), 736 (2006), DOI:10.1364/OL.31.000736
[21]F. Seifert et al., “Laser power stabilization for second-generation gravitational wave detectors”, Opt. Lett. 31 (13), 2000 (2006), DOI:10.1364/OL.31.002000
[22]F. Kéfélian et al., “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line”, Opt. Lett. 34 (7), 914 (2009), DOI:10.1364/OL.34.000914
[23]P. Kwee et al., “Shot-noise-limited laser power stabilization with a high-power photodiode array”, Opt. Lett. 34 (19), 2912 (2009), DOI:10.1364/OL.34.002912
[24]N. Satyan et al., “Phase noise reduction of a semiconductor laser in a composite optical phase-locked loop”, Opt. Eng. 49 (12), 124301 (2010), DOI:10.1117/1.3518077
[25]Y. Zhao et al., “Sub-Hertz frequency stabilization of a commercial diode laser”, Opt. Commun. 283, 4696 (2010), DOI:10.1016/j.optcom.2010.06.079
[26]P. Kwee, B. Willke and K. Danzmann, “New concepts and results in laser power stabilization”, Appl. Phys. B 102 (3), 515 (2011), DOI:10.1007/s00340-011-4399-1
[27]M. Jing et al., “High bandwidth laser frequency locking for wideband noise suppression”, Opt. Express 29 (5), 7916 (2021), DOI:10.1364/OE.419832
[28]M. T. Nery et al., “Laser power stabilization via radiation pressure”, Opt. Lett. 46 (8), 1946 (2021), DOI:10.1364/OL.422614
[29]W. Jin et al., “Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators”, Nature Photonics 15, 346 (2021), DOI:10.1038/s41566-021-00761-7 (correction: DOI:10.1038/s41566-021-00805-y)
[30]N. Chabbra et al., “High stability laser locking to an optical cavity using tilt locking”, Opt. Lett. 46 (13), 3199 (2021), DOI:10.1364/OL.427615
[31]B. Li et al., “Reaching fiber-laser coherence in integrated photonics”, Opt. Lett. 46 (20), 5201 (2021), DOI:10.1364/OL.439720
[32]T. Cullen et al., “Passive laser power stabilization via an optical spring”, Opt. Lett. 47 (11), 2746 (2022), DOI:10.1364/OL.456535
[33]R. Paschotta, “Noise in Laser Technology”. Part 1 – Intensity and Phase Noise; Part 2: Fluctuations in Pulsed Lasers; Part 3: Beam Pointing Fluctuations

See also: frequency-stabilized lasers, laser noise, intensity noise, spiking, phase noise, linewidth, noise eaters, lasers, injection locking, carrier–envelope offset, frequency combs, frequency metrology, synchronization of lasers

Questions and Comments from Users


What metrics are commonly used to quantify stability?

The author's answer:

Typically, one would quantify the opposite – noise. For example, it might be the relative intensity noise quantified in dBm/Hz or a linewidth in Hz.

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!

Code for Links on Other Websites

If you want to place a link to this article in some other resource (e.g. your website, social media, a discussion forum, Wikipedia), you can get the required code here.

HTML link on this article:

<a href="https://www.rp-photonics.com/stabilization_of_lasers.html">
Article on Stabilization of lasers</a>
in the <a href="https://www.rp-photonics.com/encyclopedia.html">
RP Photonics Encyclopedia</a>

With preview image (see the box just above):

<a href="https://www.rp-photonics.com/stabilization_of_lasers.html">
<img src="https://www.rp-photonics.com/previews/stabilization_of_lasers.png"
alt="article" style="width:400px"></a>

For Wikipedia, e.g. in the section "==External links==":

* [https://www.rp-photonics.com/stabilization_of_lasers.html
article on 'Stabilization of lasers' in the RP Photonics Encyclopedia]