RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the


<<<  |  >>>

Definition: laser mirrors with a very high reflectivity

German: Superspiegel

Category: photonic devices

How to cite the article; suggest additional literature

An optical supermirror is a Bragg mirror (typically a dielectric mirror) that is optimized for an extremely high reflectivity – in extreme cases, larger than 99.9999%. This means that the reflection losses are below 1 ppm. Two such ultra-high reflectivity mirrors form a Fabry–Pérot interferometer with a finesse larger than 3 millions and a strong field enhancement within the cavity. The Q factor of a supermirror cavity can be above 1011.

Although most supermirrors are dielectric mirrors (often with Ta2O5/SiO2 layers made by ion beam sputtering), there are also crystalline mirrors [6] with very high peak reflectivities of e.g. 99.9997% [7].

Supermirrors can be used in certain quantum optics experiments and for some measurements with extremely high precision, e.g. involving high-finesse interferometers or optical gyroscopes.

The term supermirror is also common for X-ray and neutron reflectors. In that field, it was originally very difficult to achieve high reflectance values. Multilayer mirrors have then been developed, which offer much better performance. Still, the achieved peak reflectivities are far lower in this regime, comparing with optical supermirrors.


[1]O. Schaerpf, “Comparison of theoretical and experimental behaviour of supermirrors and discussion of limitations”, Physica B: Phys. Cond. Matter 156, 631 (1989)
[2]R. P. Stanley et al., “Ultrahigh finesse microcavity with distributed Bragg reflectors”, Appl. Phys. Lett. 65, 1883 (1994)
[3]C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity”, Phys. Rev. A 64 (3), 033804 (2001)
[4]A. Schliesser et al., “Complete characterization of a broadband high-finesse cavity using an optical frequency comb”, Opt. Express 14 (13), 5975 (2006)
[5]A. Muller et al., “Ultrahigh-finesse, low-mode-volume Fabry–Pérot microcavity”, Opt. Lett. 35 (13), 2293 (2010)
[6]G. D. Cole et al., “Tenfold reduction of Brownian noise in high-reflectivity optical coatings”, Nature Photonics 7, 644 (2013)
[7]G. D. Cole et al., “High-performance near- and mid-infrared crystalline coatings”, arxiv.org 1604.00065

(Suggest additional literature!)

See also: mirrors, dielectric mirrors, crystalline mirrors, Fabry–Pérot interferometers, finesse, Q factor
and other articles in the category photonic devices

In the RP Photonics Buyer's Guide, 5 suppliers for supermirrors are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: