Encyclopedia … combined with a great Buyer's Guide!


Definition: laser mirrors with a very high reflectivity

More general term: mirrors

German: Superspiegel

Category: photonic devicesphotonic devices


Cite the article using its DOI: https://doi.org/10.61835/w54

Get citation code: Endnote (RIS) BibTex plain textHTML

An optical supermirror is a Bragg mirror (typically a dielectric mirror) that is optimized for an extremely high reflectance – in extreme cases, larger than 99.9999%. This means that the reflection losses are below 1 ppm. Two such ultra-high reflectance mirrors form a Fabry–Pérot interferometer with a finesse larger than 3 millions and a strong field enhancement within the cavity. The Q factor of a supermirror cavity can be above 1011.

Although most supermirrors are dielectric mirrors (often with Ta2O5/SiO2 layers made by ion beam sputtering), there are also crystalline mirrors [6] with very high peak reflectivities of e.g. 99.9997% [7].

Supermirrors can be used in certain quantum optics experiments and for some measurements with extremely high precision, e.g. involving high-finesse interferometers or optical gyroscopes.

The term supermirror is also common for X-ray and neutron reflectors. In that field, it was originally very difficult to achieve high reflectance values. Multilayer mirrors have then been developed, which offer much better performance. Still, the achieved peak reflectivities are far lower in this regime, comparing with optical supermirrors.

More to Learn

Encyclopedia articles:


The RP Photonics Buyer's Guide contains five suppliers for supermirrors. Among them:


[1]O. Schaerpf, “Comparison of theoretical and experimental behaviour of supermirrors and discussion of limitations”, Physica B: Phys. Cond. Matter 156, 631 (1989); https://doi.org/10.1016/0921-4526(89)90750-3
[2]R. P. Stanley et al., “Ultrahigh finesse microcavity with distributed Bragg reflectors”, Appl. Phys. Lett. 65, 1883 (1994); https://doi.org/10.1063/1.112877
[3]C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity”, Phys. Rev. A64 (3), 033804 (2001); https://doi.org/10.1103/PhysRevA.64.033804
[4]A. Schliesser et al., “Complete characterization of a broadband high-finesse cavity using an optical frequency comb”, Opt. Express 14 (13), 5975 (2006); https://doi.org/10.1364/OE.14.005975
[5]A. Muller et al., “Ultrahigh-finesse, low-mode-volume Fabry–Pérot microcavity”, Opt. Lett. 35 (13), 2293 (2010); https://doi.org/10.1364/OL.35.002293
[6]G. D. Cole et al., “Tenfold reduction of Brownian noise in high-reflectivity optical coatings”, Nature Photonics 7, 644 (2013); https://doi.org/10.1038/nphoton.2013.174
[7]G. D. Cole et al., “High-performance near- and mid-infrared crystalline coatings”, arxiv.org 1604.00065

(Suggest additional literature!)

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Spam check:

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.


Share this with your network:

Follow our specific LinkedIn pages for more insights and updates: