RP Photonics logo
RP Photonics
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the

Telecom Fibers

<<<  |  >>>

Definition: optical fibers for use in optical fiber communications

German: Telekom-Fasern

Categories: lightwave communications, fiber optics and waveguides

How to cite the article; suggest additional literature

Telecom fibers are optical fibers which are used in optical fiber communications. Mainly the following types of telecom fibers are used:

A standard single-mode telecom fiber for the 1.3- or 1.5-μm wavelength region is the SMF-28 of Corning, and there is the enhanced version SMF-28e. The mode field diameter is ≈ 9.2 μm at 1310 nm (effective mode area = 67 μm2), or 10.4 μm at 1550 nm (85 μm2). The single-mode cut-off is at 1260 nm. The Lucent AllWave and the Alcatel ColorLock fibers have quite similar properties.

Other telecom fibers have somewhat modified properties, making them more suitable in certain areas:

As glass fibers are not sufficient robust for directly laying them down in a building or even in the ground, they are often incorporated into optical fiber cables, where various polymer layers are sometimes even metallic armors provide additional protection. For flexible indoor use, fiber patch cables with standardized fiber connectors are suitable.

Standards for Telecom Fibers

The International Telecommunications Union (ITU) has developed a number of standards for various types of fibers as used for optical fiber communications. Some of the most important of those standards are listed in Table 1.

G.650.1 (06/04)Definitions and test methods for linear, deterministic attributes of single-mode fibre and cable
G.651 (02/98)Characteristics of a 50/125 μm multimode graded index optical fibre cable
G.651.1 (07/07)Characteristics of a 50/125 μm multimode graded index optical fibre cable for the optical access network (pre-published)
G.652 (06/05)Characteristics of a single-mode optical fibre and cable
G.653 (12/06)Characteristics of a dispersion-shifted single-mode optical fibre and cable
G.654 (12/06)Characteristics of a cut-off shifted single-mode optical fibre and cable
G.655 (03/06)Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable
G.656 (12/06)Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport
G.657 (12/06)Characteristics of a bending loss insensitive single mode optical fibre and for the access network

Table 1: Important ITU standards concerning telecom fibers.

There are various other standards for telecom fibers, e.g. from ISO and IEC.

Relevant Properties of Telecom Fibers

Many different properties of a telecom fiber can be relevant for the achievable performance (partly depending on details of the used fiber-optic links) or concerning other aspects of use:


[1]W. A. Gambling, “The rise and rise of optical fibers”, IEEE J. Sel. Top. Quantum Electron. 6 (6), 1084 (2000)
[2]Standards of the International Telecommunication Union (ITU), see http://www.itu.int/

(Suggest additional literature!)

See also: fibers, fiber cables, single-mode fibers, multimode fibers, graded-index fibers, fiber patch cables, silica fibers, optical fiber communications, modal bandwidth, bandwidth–distance product, bend losses
and other articles in the categories lightwave communications, fiber optics and waveguides

In the RP Photonics Buyer's Guide, 21 suppliers for telecom fibers are listed.

If you like this article, share it with your friends and colleagues, e.g. via social media: