RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Time–bandwidth Product

<<<  |  >>>

Acronym: TBP

Definition: product of temporal and spectral width of a pulse

German: Zeit-Bandbreite-Produkt

Units: (dimensionless number)

How to cite the article; suggest additional literature

The time–bandwidth product of a pulse is the product of its temporal duration and spectral width (in frequency space). In ultrafast laser physics, it is common to specify the full width at half-maximum (FWHM) in both time and frequency domain. The minimum possible time–bandwidth product is obtained for bandwidth-limited pulses. For example, it is ≈ 0.315 for bandwidth-limited sech2-shaped pulses and ≈ 0.44 for Gaussian-shaped pulses. This means that for a given spectral width, there is a lower limit for the pulse duration. This limitation is essentially a property of the Fourier transform.

The time–bandwidth product is often used for indicating how close a pulse is to the transform limit, i.e., how close the pulse duration is to the limit which is set by its spectral width. This is an aspect of “pulse quality”; bandwidth-limited pulses have the minimum possible time–bandwidth product, whereas chirped pulses have larger values. Many mode-locked lasers can generate nearly bandwidth-limited pulses, particularly when they are based on soliton mode locking.

See also: bandwidth-limited pulses, transform limit, Spotlight article 2007-10-11, Spotlight article 2009-05-13

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow