RP Photonics logo
RP Photonics
Encyclopedia
Technical consulting services on lasers, nonlinear optics, fiber optics etc.
Profit from the knowledge and experience of a top expert!
Powerful simulation and design software.
Make computer models in order to get a comprehensive understanding of your devices!
Success comes from understanding – be it in science or in industrial development.
The famous Encyclopedia of Laser Physics and Technology – available online for free!
The ideal place for finding suppliers for many photonics products.
Advertisers: Make sure to have your products displayed here!
… combined with a great Buyer's Guide!
VLib part of the
Virtual
Library

Time-of-flight Measurements

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

6 suppliers for equipment for time-of-flight measurements are listed.

Your are not yet listed? Get your entry!

Definition: distance measurements based on measuring the time of flight of a light pulse

German: Laufzeitmessungen

Categories: methods, optical metrology, light pulses

How to cite the article; suggest additional literature

Time-of-flight measurements are often used for the measurement of some distance, e.g. with a laser range finder, used e.g. in an airplane, possibly in the form of a scanning laser radar. Here, an apparatus sends out a short optical pulse and measures the time until a reflected portion of the pulse is monitored. The distance is then calculated using the velocity of light. Due to this high velocity, the temporal accuracy must be very high – e.g. 1 ns for a spatial accuracy of 15 cm.

The time-of-flight method is typically used for large distances such as hundreds of meters or many kilometers. Using advanced techniques (involving high-quality telescopes, highly sensitive photodetection, etc.), it is possible to measure e.g. the distance between the Earth and the Moon with an accuracy of a few centimeters, or to obtain a precise profile of a dam. Typical accuracies of simple devices for short distances are a few millimeters or centimeters.

As time-of-flight measurements are preferentially used for large distances, the beam quality of the laser source is crucial. In addition, a telescope can be used to obtain a large beam diameter and an accordingly increased Rayleigh length, i.e. a small beam divergence. The target can be equipped with a retroreflector in order to increase the amount of reflected light. The pulse duration used is usually between 100 ps and a few tens of nanoseconds, as achieved with a Q-switched laser. For large distances, high pulse energies are required. This can raise laser safety issues, particularly if the laser wavelength is not in the eye-safe region. For nanojoule to microjoule pulse energies (as required for moderate distances), it is possible to use a passively Q-switched microchip Er:Yb:glass laser, which can generate fairly short pulses (duration of the order of 1 ns) with pulse energies around 10 μJ in the eye-safe spectral region.

A related method is the phase shift method for distance measurements. Here, a continuously modulated signal instead of separated pulses is used.

Bibliography

[1]M.-C. Amann et al., “Laser ranging: a critical review of usual techniques for distance measurement”, Opt. Eng. 40 (1), 10 (2001)

(Suggest additional literature!)

See also: distance measurements with lasers, phase shift method for distance measurements

In the RP Photonics Buyer's Guide, 6 suppliers for equipment for time-of-flight measurements are listed.

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

Thin-film Optics Software

RP Coating is a most versatile software for thin-film design. Analyze and optimize a wide range of devices:

coating design

Further features:

Use RP Coating to quickly become a thin-film expert!

– Show all banners –

– Get your own banner! –