RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


Transition-metal-doped Gain Media

Definition: laser gain media which are doped with transition metal ions

German: Übergangsmetall-Lasermedien

Categories: optical amplifiers, lasers, optical materials

How to cite the article; suggest additional literature

A number of solid-state laser gain media are doped with transition metal ions, having optical transitions involving the electrons of the 3d shell. Table 1 gives an overview of the most common transition metal ions and their host media.

Table 1: Common transition metal ions and host media.

Ion Common host media Typical emission wavelengths
titanium (Ti3+) sapphire 0.65–1.1 μm
divalent chromium (Cr2+) zinc chalcogenides such as ZnS, ZnSe, and ZnSxSe1−x 1.9–3.4 μm
trivalent chromium (Cr3+) ruby (Al2O3), alexandrite (BeAl2O4); LiSAF, LiCAF, LiSAF, and similar fluorides 0.7–0.9 μm
tetravalent chromium (Cr4+) YAG, MgSiO4 (forsterite) and other silicates 1.1–1.65 μm

More exotic ions for lasers are cobalt (Co2+), nickel (Ni2+), and iron (Fe2+).

A common property of transition metal ions is that the corresponding absorption and laser transitions have a very broad bandwidth, leading in particular to a very large gain bandwidth. This results from the strong interaction of the electronic transitions with phonons (→ vibronic lasers), which is a kind of homogeneous broadening. Laser-active transition metal ions are basically always used in crystals rather than glasses as host media, since crystals offer a higher thermal conductivity and the additional inhomogeneous broadening from glasses would hardly be useful.

The most important lasers based on transition-metal-doped gain media are titanium–sapphire lasers and various lasers based on chromium-doped gain media such as Cr4+:YAG or Cr3+:LiSAF. Less common are lasers based on media such as Co2+:MgF2, Co2+:ZnF2 and Ni2+:MgF2.


[1]R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes”, Opt. Mater. 1, 1 (1992)
[2]E. Sorokin et al., “Ultrabroadband infrared solid-state lasers”, IEEE J. Sel. Top. Quantum Electron. 11 (3), 690 (2005) (a review mainly concerning Cr2+ and Cr4+ lasers)
[3]S. B. Mirov et al., “Recent progress in transition-metal-doped II–VI mid-IR lasers”, IEEE J. Sel. Top. Quantum Electron. 13 (3), 810 (2007)
[4]V. V. Fedorov et al., “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures”, IEEE J. Quantum Electron. 42 (9), 907 (2006)

(Suggest additional literature!)

See also: chromium-doped gain media, rare-earth-doped gain media, vibronic lasers, titanium–sapphire lasers
and other articles in the categories optical amplifiers, lasers, optical materials

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: