RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Twyman–Green Interferometers

Definition: an interferometer similar to a Michelson interferometer, but with expanded beams

German: Twyman–Green-Interferometer

Categories: photonic devices, optical metrology

How to cite the article; suggest additional literature

Twyman–Green interferometers, named after Frank Twyman and Arthur Green, are interferometers which are used for characterizing optical surfaces.

The optical setup is similar to that of a Michelson interferometer, but a Twyman–Green interferometer works with collimated beams which are expanded to a substantial diameter. In the simplest case, such an expanded beam is directly sent to the inspected surface, and the resulting interference pattern is imaged such that it can either be directly observed through an eyepiece (ocular lens) or registered with a monochrome electronic image sensor.

Twyman-Green interferometer
Figure 1: Setups of Twyman–Green interferometers. In the lower case, the wavefront curvature is adjusted to the curved test object, using an additional lens.

The inspected surface can be that of a mirror or some other kind of optical element; for use as an end mirror, one just requires some significant reflectivity of the surface, and there should be no additional reflection which could spoil the interference pattern. Some elements (e.g. lenses, prisms and mirror substrates) can also be inserted in the beam path for inspection in transmission, i.e., they are combined with a suitable kind of mirror. That can also work with microscope objectives, for example.

image from a Twyman-Green interferometer
Figure 2: Interference rings occur if the surface curvatures are not precisely matched.

If the investigated surface is not flat, the optical wavefronts need to be approximately matched to it, e.g. using one or more lenses or curved mirrors. Otherwise, the resulting interferences stripes could be too closely spaced to be observed. Figure 2 shows a case where the curvature is not exactly matched, but good enough to easily resolve the interference rings.

In some cases, it is necessary to insert another beam expander before the object of test in order to image a larger area on the object.

For inspecting aspheric optics, one will usually require a high-quality reference surface with which further devices can be inspected, because the deviation from a spherical mirror, for example, may be too high to measure.

The inspected surface must be imaged to the detector, such that each point in the image corresponds to a point on the inspected surface.

image from a Twyman-Green interferometer
Figure 3: Simulated Twyman–Green interferometer image with a phase disturbance in the central area.

The object under test or the reference mirror is intentionally very slightly tilted e.g. by turning a micrometer screw, so that one obtains an interference pattern with regular stripes having an appropriate spacing. These stripes are perfect lines if the test surface exactly matches the reference surface. Any deviations between the surface shapes lead to distortions of those stripes (Fizeau curves). For topographic deviations of several wavelengths, one may simply count the number of stripes in order to measure the height.

Recorded digital images may be more closely analyzed with suitable computer software, which may allow detailed measurements of surface shape deviations.

The used reference mirror as well as the beam splitter and other optical components should have a very high optical quality, so that any observed distortions are only due to imperfections of the investigated objects.

Possible Alternative Solutions

Optical elements may also be tested with Mach–Zehnder interferometers.

A completely different approach is to use an optical profilometer, which measures the surface topography more directly.

See also: interferometers, Michelson interferometers, optical profilometers
and other articles in the categories photonic devices, optical metrology

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow