Vanadate Lasers
Author: the photonics expert Dr. Rüdiger Paschotta (RP)
Definition: lasers based on rare-earth-doped yttrium, gadolinium or lutetium vanadate crystals, usually Nd:YVO4
More specific term: solid-state lasers
Categories: optical materials, laser devices and laser physics
DOI: 10.61835/1nd Cite the article: BibTex plain textHTML Link to this page LinkedIn
The term vanadate laser is usually used for lasers based on neodymium-doped vanadate crystals. In particular, these include yttrium vanadate (Nd:YVO4), gadolinium vanadate (Nd:GdVO4), and lutetium vanadate (Nd:LuVO4). These vanadates are also called orthovanadates. Such materials have been known for a long time [1], but became popular only many years later because for a long period it was difficult to grow them with high optical quality in sufficiently large sizes. Apart from progress in crystal growth, the advent of diode pumping increased the interest in vanadates also because much smaller crystals could be used, while lamp-pumped lasers usually require rather long laser rods.
There are also vanadate crystals doped with other rare earth ions, e.g. with ytterbium (Yb3+), erbium (Er3+), thulium (Tm3+) or holmium (Ho3+) doping. Due to the similar size, yttrium, gadolinium or lutetium ions can be replaced with laser-active rare earth ions without strongly affecting the lattice structure. This is important e.g. for preserving high thermal conductivity of the doped materials.
Vanadate crystals are naturally birefringent, which eliminates thermally induced depolarization loss in high-power lasers. Also, the laser gain is strongly polarization dependent (→ polarization of light); the highest gain is usually achieved for polarization along the <$c$> axis. The pump absorption is also strongly polarization-dependent (except at special wavelengths), which can cause problems e.g. when using a fiber-coupled pump source with drifting polarization.
For Nd:YVO4, the typical laser emission wavelength is 1064 nm, i.e., essentially the same as for Nd:YAG. Other important emission wavelengths are 914 and 1342 nm; those differ substantially from those of Nd:YAG. The 1342-nm emission line is much stronger than the corresponding 1.32-μm line in Nd:YAG, thus allowing for much better performance in 1.3-μm operation.
Property | Value |
---|---|
chemical formula | Nd3+:YVO4 |
crystal structure | tetragonal |
mass density | 4.22 g/cm3 |
Moh hardness | 5–6 |
Young's modulus | 133 GPa |
tensile strength | 53 MPa |
melting point | 1810 °C |
thermal conductivity | ≈ 5 W / (m K) (values around 9–12 are also found in the literature) |
thermal expansion coefficient | 11 × 10−6 K−1 (<$c$> direction), 4.4 × 10−6 K−1 (<$a$> direction) |
transparency range | 0.3–2.5 μm |
birefringence | positive uniaxial |
refractive index at 1064 nm | 2.17 for <$c$> polarization (extraordinary), 1.96 ordinary index |
temperature dependence of refractive index | 3 × 10−6 K−1 in <$c$> direction, 8.5 × 10−6 K−1 in the <$a$> direction |
Nd density for 1% at. doping | 1.24 × 1020 cm−3 |
fluorescence lifetime | 90 μs |
absorption cross-section at 808 nm | 60 × 10−20 cm2 (<$c$> polarization) |
emission cross-section at 1064 nm | 114 × 10−20 cm2 (<$c$> polarization) |
gain bandwidth | 1 nm |
Comparison of Nd:YVO4 and Nd:YAG
Nd:YVO4 lasers are usually diode-pumped, but can also be lamp-pumped. Compared with Nd:YAG (→ YAG lasers), Nd:YVO4 exhibits a much higher pump absorption and gain (due to the very high absorption and laser cross-sections), a broader gain bandwidth (around 1 nm), a much broader wavelength range for pumping (often eliminating the need to stabilize the pump wavelength), a shorter upper-state lifetime (≈ 100 μs for not too high neodymium concentrations), a higher refractive index, a lower thermal conductivity, and birefringence. The consequences of these differences for various modes of laser operation are the following:
- For continuous-wave operation, Nd:YVO4 allows overall similar performance to Nd:YAG in cases with medium or high power. Whereas the thermal conductivity is worse, the temperature coefficient of the refractive index is smaller, so that thermal lensing is not stronger. Due to its high gain efficiency, Nd:YVO4 is better than Nd:YAG for lasers with very low threshold pump power.
- Nd:YVO4 is extremely well suited for passively mode-locked lasers with very high pulse repetition rate; nearly 160 GHz have been demonstrated. This feature results mainly from the high laser cross-sections and the strong pump absorption.
- For Q-switched lasers, Nd:YVO4 does not allow for pulse energies as high as for Nd:YAG because its capability for energy storage is lower than that of Nd:YAG due to the lower upper-state lifetime and the high gain efficiency. On the other hand, Nd:YVO4 is better suited for high pulse repetition rates, where it still allows the generation of fairly short Q-switched pulses.
Other Nd-doped Vanadate Crystals
Compared with Nd:YVO4, Nd:GdVO4 has a similar thermal conductivity, a slightly shorter emission wavelength (1063 nm), a somewhat larger gain bandwidth, lower emission cross-sections, and still higher pump absorption. Note, however, that the published data concerning thermal conductivity of vanadate crystals differ considerably, so there are some significant uncertainties.
More to Learn
Encyclopedia articles:
- laser crystals
- YAG lasers
- YLF lasers
- neodymium-doped laser gain media
- rare-earth-doped laser gain media
Blog articles:
- The Photonics Spotlight 2006-09-16: “Q-switched Lasers: YAG versus Vanadate”
- The Photonics Spotlight 2006-11-04: “Nd:YVO4 Laser with Polarization-Independent Pump Absorption”
Bibliography
[1] | J. R. O'Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd”, Appl. Phys. Lett. 9, 407 (1966); https://doi.org/10.1063/1.1754631 |
[2] | A. I. Zagumennyi et al., “The Nd3+:GdVO4 crystal: a new material for diode-pumped lasers”, Sov. J. Quantum Electron. 22, 1071 (1992); https://doi.org/10.1070/QE1992v022n12ABEH003672 |
[3] | J. L. Blows et al., “Heat generation in Nd:YVO4 with and without laser action”, IEEE Photon. Technol. Lett. 10 (12), 1727 (1998); https://doi.org/10.1109/68.730483 |
[4] | N. Hodgson et al., “High power TEM00 mode operation of diode-pumped solid-state lasers”, Proc. SPIE 3611, 119 (1999); https://doi.org/10.1117/12.349265 |
[5] | Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-onedimensional flash method”, Opt. Express 14 (22), 10528 (2006); https://doi.org/10.1364/OE.14.010528 |
[6] | N. Pavel et al., “In-band pumping of Nd-vanadate thin-disk lasers”, Appl. Phys. B 91 (3-4), 415 (2008); https://doi.org/10.1007/s00340-008-3013-7 |
[7] | J. Liu et al., “Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals”, IEEE J. Quantum Electron. 45 (7), 807 (2009); https://doi.org/10.1109/JQE.2009.2014253 |
[8] | Y. Yan et al., “Near-diffraction-limited, 35.4 W laser-diode end-pumped Nd:YVO4 slab laser operating at 1342 nm”, Opt. Lett. 34 (14), 2105 (2009); https://doi.org/10.1364/OL.34.002105 |
[9] | D. Sangla et al., “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm”, Opt. Lett. 34 (14), 2159 (2009); https://doi.org/10.1364/OL.34.002159 |
[10] | G. Turri et al., “Temperature-dependent stimulated emission cross-section in Nd3+:YVO4 crystals”, J. Opt. Soc. Am. B 26 (11), 2084 (2009); https://doi.org/10.1364/JOSAB.26.002084 |
[11] | X. Délen et al., “Temperature dependence of the emission cross-section of Nd:YVO4 around 1064 nm and consequences on laser operation”, J. Opt. Soc. Am. B 28 (5), 972 (2011); https://doi.org/10.1364/JOSAB.28.000972 |
[12] | Yu Fu et al., “Photon–phonon collaboratively pumped laser”, Nature Commun. 14, 8110 (2023); https://doi.org/10.1038/s41467-023-43959-9 |
(Suggest additional literature!)
This encyclopedia is authored by Dr. Rüdiger Paschotta, the founder and executive of RP Photonics AG. How about a tailored training course from this distinguished expert at your location? Contact RP Photonics to find out how his technical consulting services (e.g. product designs, problem solving, independent evaluations, training) and software could become very valuable for your business!
Suppliers
The RP Photonics Buyer's Guide contains ten suppliers for vanadate lasers. Among them:
ALPHALAS
The unique properties of Nd3+-doped vanadate laser crystals (GdVO4 and YVO4) provide very high gain, highly polarized laser emission and thermally birefringence-free laser media. ALPHALAS intensively uses these laser crystals for the production of PICOPOWER, PULSELAS and MONOPOWER diode-pumped lasers as standard or customer-specific components.
Share this with your network:
Follow our specific LinkedIn pages for more insights and updates: