RP Photonics

Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library

Waveguide Lasers

Definition: lasers with a waveguide structure in the gain medium

German: Wellenleiter-Laser

Categories: fiber optics and waveguides, lasers

How to cite the article; suggest additional literature

A waveguide laser is a laser which contains a waveguide as the gain medium.

Types of Waveguide Lasers

There are very different types of waveguide lasers:

  • Solid-state waveguide lasers are usually based on some planar or channel waveguides in some crystal or glass pieces.
  • Fiber lasers are also waveguide lasers.
  • Essentially all laser diodes are waveguide lasers, with optical guidance at least in one direction. The smaller laser diodes even use single-mode guidance; the larger ones (e.g. broad area laser diodes and diode bars) exhibit multimode behavior at least in one direction.
  • Waveguide structures are also used in some CO2 lasers. The advantages are that the transverse dimensions of the gas tube can be reduced so as to obtain efficient cooling of the laser gas, and that the obtained beam quality can be very high.

Characteristic Properties of Waveguide Lasers

The most important benefit of using a waveguide is that effectively the beam divergence is removed, so that high optical intensities can be maintained over a long length. This in turn makes it possible to achieve a high optical gain and a high gain efficiency even for difficult laser transitions and with limited pump power. However, this benefit may partially be offset by propagation losses in the waveguide, which may be substantially higher than for bulk material.

The combination of a long propagation length and small mode area can cause a strong impact of nonlinearities of the material. This can limit the performance of certain devices, whereas in other cases nonlinear effects are exploited in some way. For example, Raman fiber lasers exploit strong stimulated Raman scattering.

Thermal effects such as thermal lensing in the gain media are largely suppressed by the waveguiding, particularly in the case of single-mode guidance. As thermal effects are usually weaker than the guiding index contrast, they lead only to a slight deformation of the guide mode, which has no significant consequences.

Waveguide lasers can be integrated with other optical elements on the same device, e.g. with optical modulators for Q switching, active mode locking, or wavelength tuning. This is particularly the case when the gain medium is a nonlinear crystal material such as lithium niobate (LiNbO3), or a semiconductor. A waveguide laser may even be part of a complex photonic integrated circuit.

An attraction of some planar waveguide lasers is that the pump light from a laser diode can be proximity coupled into the waveguide without any optics in between.

Waveguide lasers usually have a monolithic laser resonator, resulting in various advantages such as a stable and compact setup.

Bibliography

[1]E. Lallier, “Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers”, Appl. Opt. 31 (25), 5276 (1992)
[2]K. A. Winick, “Rare-earth-doped waveguide lasers in glass and LiNbO3: a review”, Proc. SPIE 3280, 88 (1998)
[3]C. Becker et al., “Advanced Ti:Er:LiNbO3 waveguide lasers”, IEEE J. Sel. Top. Quantum Electron. 6 (1), 101 (2000)
[4]S. J. Hettrick et al., “Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass”, Opt. Lett. 25 (19), 1433 (2000)
[5]C. L. Bonner et al., “Double-clad structures and proximity coupling for diode-bar-pumped planar waveguide lasers”, IEEE J. Quantum Electron. 36 (2), 236 (2000)
[6]J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review”, IEEE J. Sel. Top. Quantum Electron. 13 (3), 26 (2007)
[7]H. Byun et al., “Integrated low-jitter 400-MHz femtosecond waveguide laser”, IEEE Photon. Technol. Lett. 21 (12), 763 (2009)
[8]T. Calmano et al., “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing”, Appl. Phys. B 100, 131 (2010)
[9]D. Geskus et al., “High-power, broadly tunable, and low-quantum-defect KGd1−xLux(WO4)2:Yb3+ channel waveguide lasers”, Opt. Express 18 (25), 26107 (2010)

(Suggest additional literature!)

See also: waveguides, planar waveguides, integrated optics, photonic integrated circuits, monolithic solid-state lasers, lasers, laser diodes
and other articles in the categories fiber optics and waveguides, lasers

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow