RP Photonics

Encyclopedia … combined with a great Buyer's Guide!


White Light Interferometers

Definition: interferometers using broadband light inputs

German: Wei├člichtinterferometer

Categories: optical metrology, photonic devices

How to cite the article; suggest additional literature

A white light interferometer, used e.g. in the context of low-coherence interferometry, is an interferometer, typically a Michelson interferometer, which works with a white light source, i.e. with a light source with broad optical bandwidth. The light source does not necessarily operate in the visible spectral range, really generating white light. Its temporal coherence has to be fairly small, whereas a high spatial coherence is normally needed. The high spatial coherence combined with a broad bandwidth can most easily be obtained by launching light from a bulb into a single-mode fiber, but this leads to a very small launched power. The radiance (brightness) can be increased by many orders of magnitude by using a superluminescent source such as a superluminescent diode. In some cases, wavelength-swept tunable lasers are used.

The detector in a white light interferometer can either be a photodetector which integrates contributions of different wavelengths and records the signal in the time domain, or a spectrometer (spectral interferometry).

Application of White Light Interferometry

White light interferometry is used for different purposes. The main applications are:

  • The measurement of chromatic dispersion. Here, the dispersive optical element is placed in one interferometer arm, and the detector signal is monitored while scanning the relative arm length through some range. Around zero arm length difference, interferometric wiggles occur, whereas the signal is about constant for large arm length differences. With strong dispersion, the recorded interferogram becomes broader. By applying a Fourier transform algorithm to the recorded interferogram, it is possible to retrieve the complex reflection or transmission coefficient of the device under test, and numerical differentiation reveals the wavelength-dependent group delay and chromatic dispersion.
  • The measurement of distances. Compared with interferometers based on narrow-linewidth laser sources, the typical ambiguity issues are avoided. A special case is the measurement of surface profiles. For example, a Michelson interferometer with a CCD camera as detector may be used. Again, images are recorded for different arm length differences. Each pixel displays the interferometric wiggles around the point of zero arm length difference at the given transverse location. Unlike the situation in a narrow-band interferometer, no phase-unwrapping procedure is required, so that even rough surfaces can be easily handled.
  • Similarly, reflections within a photonic integrated circuit can be detected.


The RP Photonics Buyer's Guide contains 6 suppliers for white light interferometers. Among them:


[1]K. Naganuma et al., “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light”, Opt. Lett. 15 (7), 393 (1990)
[2]M. Beck and I. A. Walmsley, “Measurement of group delay with high temporal and spectral resolution”, Opt. Lett. 15 (9), 492 (1990)
[3]A. P. Kovacs et al., “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry”, Opt. Lett. 20 (7), 788 (1995)
[4]S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry”, J. Opt. Soc. Am. B 13 (6), 1120 (1996)
[5]C. Dorrer et al., “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers”, Appl. Phys. B 70, S99 (2000)
[6]Q. Ye et al., “Dispersion measurement of tapered air–silica microstructure fiber by white-light interferometry”, Appl. Opt. 41 (22), 4467 (2002)
[7]A. Gosteva et al., “Noise-related resolution limit of dispersion measurements with white-light interferometers”, J. Opt. Soc. Am. B 22 (9), 1868 (2005)
[8]T. V. Amotchkina et al., “Measurement of group delay of dispersive mirrors with white-light interferometer”, Appl. Opt. 48 (5), 949 (2009)

(Suggest additional literature!)

See also: interferometers, coherence, chromatic dispersion, white light sources, Spotlight article 2008-02-22
and other articles in the categories optical metrology, photonic devices

How do you rate this article?

Click here to send us your feedback!

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you enter any personal data, this implies that you agree with storing it; we will use it only for the purpose of improving our website and possibly giving you a response; see also our declaration of data privacy.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media: