RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Photon Counting

<<<  |  >>>  |  Feedback

Ask RP Photonics for any advice in the context of photodetection. RP Photonics has extensive know-how e.g. on different detectors and their detection noise.

Definition: photodetection at low light levels where single photon absorption events are counted

German: Photonenzählung, Einzelphotonendetektion

Some kinds of photodetectors are so sensitive that they allow the detection of single photons. It is then possible to register single photon absorption events, rather than measuring an optical intensity or power. It is also possible to register coincidences between two or more detectors; this is very important for many experiments in quantum optics.

Important Properties of Photon Counters

Photon counting detectors have characteristic properties which are somewhat different from those of other photodetectors. The most important ones are the following:

Photodetectors for Photon Counting

The classical way of single photon detection is to use a photomultiplier tube. Particularly with a cooled photocathode, such a device can have a very low dark count rate. The quantum efficiency can reach several tens of percent in the visible spectral region, whereas devices for infrared light achieve quantum efficiencies of at most a few percent.

Avalanche photodiodes (APDs) can be operated in the Geiger mode for photon counting. Here, the applied reverse voltage is slightly above the avalanche breakdown voltage. An electron can then be triggered by a single photon, and must be stopped by lowering the voltage for a short time interval, which determines the dead time. Depending on the wavelength, the quantum efficiency can be well above 50%. The dark count rate can be strongly reduced by cooling the diode, but this can increase the rate of after-pulses caused by trapped electrical carriers. Silicon-based APDs are used between roughly 350 and 1050 nm and can reach dark count rates of only a few hertz. A typical r.m.s. timing jitter is some tens of picoseconds. For longer wavelengths in the near-infrared region, devices based on indium gallium arsenide (InGaAs) and indium phosphide (InP) or germanium (Ge) are used. Their quantum efficiency is lower than that of silicon devices in the visible spectrum, but higher than for IR photomultipliers. Count rates are typically limited to a few megahertz, or more for silicon APDs.

Hybrid photomultipliers (see the article on photomultipliers) are essentially consisting of a vacuum tube with an integrated avalanche diode; they offer the combination of some beneficial features of photomultipliers and avalanche diodes, in particular a high speed, a high pulse height resolution and a compact setup.

For longer wavelengths, sum frequency generation in a nonlinear crystal allows one to upconvert the photons to the visible spectral range, followed by detection with a silicon APD. A less common approach is to use a superconducting single photon detector.

Applications

Single photon counters are used in various areas of science and technology:

See also: photons, photodetectors, avalanche photodiodes, photomultipliers, quantum efficiency

Categories: methods, photonic devices, quantum optics

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

arrow

Have you seen the
RP Photonics Buyer's Guide?

It lists many hundreds of suppliers for photonics products, and is just one mouse click away from the extremely popular Encyclopedia of Laser Physics and Technology:

Our Buyer's Guide is what you need:

And surely you will remember where to find this useful resource again!

Suppliers: get your free entries, and enhanced visibility with paid entries.

Read a random article every day in order to steadily learn about photonics!

Tailored Training Courses

Within one or two days, a tailored training course at your location can boost the competence of your team. An investment which can pay back very rapdily!

Laser Design Services

Fast and efficient laser development is possible with the competent design services of RP Photonics, based on extensive experience, deep scientific knowledge and advanced software.

Free Fiber Optics Software!

RP Fiber Calculator software

RP Fiber Calculator – a convenient tool for calculations on optical fibers -- offered for free
let us celebrate the 10-year anniversary of RP Photonics!

Resonator Design Software

RP Resonator – do you know a more flexible resonator design software?

laser resonator design