RP Photonics logo
RP Photonics
Encyclopedia
Consulting Software Encyclopedia Buyer's Guide

Short address: rpp-con.com

Dr. Paschotta, the founder of RP Photonics, supports your R & D with his deep expertise. Save time and money with efficient support!

Short address: rpp-soft.com

Powerful simulation software for fiber lasers and amplifiers, resonator design, pulse propagation and multilayer coating design.

Short address: rpp-enc.com

The famous Encyclopedia of Laser Physics and Technology provides a wealth of high-quality scientific and technical information.

Short address: rpp-bg.com

In the RP Photonics Buyer's Guide, you easily find suppliers for photo­nics products. As a supp­lier, you can profit from enhanced entries!

Learn on lasers and photonics every day!
VL logo part of the
Virtual
Library

Beam Splitters

<<<  |  >>>  |  Feedback

Buyer's Guide

The ideal place to find suppliers for photonics products: high-quality information, simple and fast, respects your privacy!

108 suppliers for beam splitters are listed.

Your are not yet listed? Get your entry!

Definition: devices for splitting a laser beam into two or more beams

German: Strahlteiler

Category: general optics

How to cite the article; suggest additional literature

A beam splitter (or beamsplitter, power splitter) is an optical device which can split an incident light beam (e.g. a laser beam) into two or more beams, which may or may not have the same optical power. Different types of beam splitters exist, as described in the following, and are used for very different purposes. For example, beam splitters are required for interferometers, autocorrelators, cameras, projectors and laser systems.

Types of Beam Splitters

Dielectric Mirrors

beam splitter

Figure 1: A partially reflecting mirror, used as a beam splitter.

Any partially reflecting mirror can be used for splitting light beams. In laser technology, dielectric mirrors are often used for such purposes. The angle of incidence, also determining the angular separation of the output beams, may be 45° (as in Figure 1), which is often convenient, but it can also have other values, and influences the characteristics of the beam splitter. A wide range of power splitting ratios can be achieved via different designs of the dielectric coating.

In general, the reflectivity of a dichroic mirror depends on the polarization state of the beam. Such a device can be optimized to function as a thin-film polarizer, where in some wavelength range a beam with a certain polarization can be nearly totally reflected, while a beam with different polarization is largely transmitted. On the other hand, it is also possible to optimize for a minimized polarization dependence to obtain a non-polarizing beam splitter. This is most easily achieved for near normal incidence.

Dielectric beam splitters can also have a strongly wavelength-dependent reflectivity. This can be used for dichroic beam splitters (→ dichroic mirrors), which can separate spectral components of a beam. For example, such a device may be used after a frequency doubler for separating the harmonic beam from residual pump light. The separation may occur based on the difference in wavelength or polarization.

Beam Splitter Cubes

beam splitter cube

Figure 2: A beam splitter cube, which may be polarizing or non-polarizing.

Many beam splitters have the form of a cube, where the beam separation occurs at an interface within the cube (Figure 2). Such a cube is often made of two triangular glass prisms which are glued together with some transparent resin or cement. The thickness of that layer can be used to adjust the power splitting ratio for a given wavelength.

Instead of glass, crystalline media can be used, which can be birefringent. This allows the construction of various types of polarizing beam splitter cubes such as Wollaston prisms and Nomarski prisms, where the two output beams emerge from the same face, and the angle between these beams is typically between 15° and 45°, i.e., much smaller than shown in Figure 2. Other types are the Glan–Thompson prism, and the Nicol prism, the latter having a rhombohedral form (i.e., not that of a cube).

It is also possible to use a multilayer coating within a cube. This further expands the possible device characteristics, e.g. in terms of operation bandwidth or polarizing properties.

Beam splitter cubes can be used not only for simple light beams, but also for beams carrying images, e.g. in various types of cameras and projectors.

Fiber-optic Beam Splitters

fiber-optic beam splitter

Figure 3: A fiber-optic beam splitter with a single input port and two output ports.

Various types of fiber couplers can be used as fiber-optic beam splitters. Such a device can be made by fusion-combining fibers, and may have two or more output ports. As for bulk devices, the splitting ratio may or may not strongly depend on the wavelength and polarization of the input.

Fiber-optic splitters are required for fiber-optic interferometers, as used e.g. for optical coherence tomography. Splitters with many outputs are required for the distribution of data from a single source to many subscribers in a fiber-optic network, e.g. for cable-TV.

Other Types

Other types of beam splitters are:

  • metal-coated mirrors (e.g. half-silvered mirrors), where the metallic coating is made thin enough to obtain partial reflectance
  • pellicles, which are thin membranes, sometimes used in cameras
  • micro-optic beam splitters, often used for generating multiple output beams
  • waveguide beam splitters, used in photonic integrated circuits

Important Properties

Apart from the characteristics concerning the basic function of a beam splitter – the splitting ratio as a function of wavelength and polarization – other properties of beam splitters can be important in applications:

Combining Beams

Any beam splitter may in principle also be used for combining beams to a single beam. This can be considered as operation with the reversed direction of time. However, the output power is then not necessarily the sum of input powers, and may strongly depend on details like tiny path length differences, since interference occurs. Such effects can of course not occur e.g. when the different beams have different wavelengths or polarization.

Bibliography

[1]M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube”, Appl. Opt. 31 (25), 5345 (1992)
[2]M. D. Turner et al., “Miniature chiral beamsplitter based on gyroid photonic crystals”, Nature Photon. 7, 801 (2013)

(Suggest additional literature!)

See also: polarizers, thin-film polarizers, dielectric mirrors, dichroic mirrors, metal-coated mirrors, interferometers, autocorrelators, beam combining

How do you rate this article?

Your general impression: don't know poor satisfactory good excellent
Technical quality: don't know poor satisfactory good excellent
Usefulness: don't know poor satisfactory good excellent
Readability: don't know poor satisfactory good excellent
Comments:

Found any errors? Suggestions for improvements? Do you know a better web page on this topic?

Spam protection: (enter the value of 5 + 8 in this field!)

If you want a response, you may leave your e-mail address in the comments field, or directly send an e-mail.

If you like our website, you may also want to get our newsletters!

If you like this article, share it with your friends and colleagues, e.g. via social media:

arrow

Laser Design Services

The quality of a laser product is largely determined by its design and not just by the used parts.

Developing a good design requires a high technical competence and experience. Dr. Paschotta from RP Photonics offers can greatly help by

Note: with a trial-and-error approach you may waste a lot of time and resources. (Also consider time to market!) Therefore, competent help is the key for cost-efficient and lower-risk developments.

You may also involve us only if you got into trouble, but coming earlier is usually better.

– Show all banners –

– Get your own banner! –